Nanotip-Engineered TiO2 Photoanodes Enable Efficient Hydroxyl Radical Synthesis via Selective Water Oxidation

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jun Zhang*, , , Ruiquan Yu, , , Songying Qu*, , , Jie Mao, , and , Li Ling*, 
{"title":"Nanotip-Engineered TiO2 Photoanodes Enable Efficient Hydroxyl Radical Synthesis via Selective Water Oxidation","authors":"Jun Zhang*,&nbsp;, ,&nbsp;Ruiquan Yu,&nbsp;, ,&nbsp;Songying Qu*,&nbsp;, ,&nbsp;Jie Mao,&nbsp;, and ,&nbsp;Li Ling*,&nbsp;","doi":"10.1021/acs.nanolett.5c03879","DOIUrl":null,"url":null,"abstract":"<p >Hydroxyl radicals (·OH) are pivotal for green synthesis, anticancer therapy, and environmental remediation, yet controllable synthesis remains challenging. Photoelectrochemical single-electron water oxidation (1e<sup>–</sup> WOR) provides a sustainable route for on-demand ·OH generation but is hindered by competing 4e<sup>–</sup> oxidation pathways and sluggish interfacial mass transport. Here, we overcome these limitations through a nanotip engineering strategy that integrates synergistic microfield regulation and interface optimization. Using TiO<sub>2</sub> nanocones, we demonstrate nanotip-generated localized positive-charge-enhanced electric fields and reagent/temperature gradients. This configuration enhances OH<sup>–</sup> adsorption, elevates the *OH → *O energy barrier, and boosts mass transport, collectively promoting ·OH generation. Furthermore, inherent aerophobicity enables rapid O<sub>2</sub> bubble detachment, suppressing detrimental *OH–O<sub>2</sub> hydrogen bonding (thermodynamically favoring the 1e<sup>–</sup> pathway) while dynamically renewing active sites (kinetically reducing steric hindrance). These synergistic effects yield a record ·OH synthesis rate (∼92.2 μM/min) and near-complete pollutant degradation (&gt;6.7-fold enhancement over previous reports). Our work establishes rational design principles for high-efficiency ·OH-driven photoelectrodes.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 42","pages":"15279–15287"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03879","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroxyl radicals (·OH) are pivotal for green synthesis, anticancer therapy, and environmental remediation, yet controllable synthesis remains challenging. Photoelectrochemical single-electron water oxidation (1e WOR) provides a sustainable route for on-demand ·OH generation but is hindered by competing 4e oxidation pathways and sluggish interfacial mass transport. Here, we overcome these limitations through a nanotip engineering strategy that integrates synergistic microfield regulation and interface optimization. Using TiO2 nanocones, we demonstrate nanotip-generated localized positive-charge-enhanced electric fields and reagent/temperature gradients. This configuration enhances OH adsorption, elevates the *OH → *O energy barrier, and boosts mass transport, collectively promoting ·OH generation. Furthermore, inherent aerophobicity enables rapid O2 bubble detachment, suppressing detrimental *OH–O2 hydrogen bonding (thermodynamically favoring the 1e pathway) while dynamically renewing active sites (kinetically reducing steric hindrance). These synergistic effects yield a record ·OH synthesis rate (∼92.2 μM/min) and near-complete pollutant degradation (>6.7-fold enhancement over previous reports). Our work establishes rational design principles for high-efficiency ·OH-driven photoelectrodes.

Abstract Image

纳米尖端设计的TiO2光阳极通过选择性水氧化实现羟基自由基的高效合成。
羟基自由基(·OH)是绿色合成、抗癌治疗和环境修复的关键,但可控的合成仍然具有挑战性。光电化学单电子水氧化(1e- WOR)为按需生成·OH提供了一条可持续的途径,但受到竞争的4e-氧化途径和缓慢的界面质量传递的阻碍。在这里,我们通过纳米尖端工程策略克服了这些限制,该策略集成了协同微场调节和界面优化。利用TiO2纳米锥,我们展示了纳米尖端产生的局部正电荷增强电场和试剂/温度梯度。这种结构增强了OH-吸附,提高了*OH→*O的能垒,促进了质量传递,共同促进了·OH的生成。此外,固有的疏气性使O2气泡快速脱离,抑制有害的*OH-O2氢键(热力学上有利于1e-途径),同时动态更新活性位点(动力学上降低位阻)。这些协同效应产生了创纪录的·OH合成速率(~ 92.2 μM/min)和几乎完全的污染物降解(比以前的报道提高了6.7倍)。我们的工作建立了高效·oh驱动光电极的合理设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信