A Machine Learning-Driven Cyclic Optimizing Strategy for the Construction of Paper-Based Microfluidic Devices in the Early Diagnosis of Periodontitis

IF 9.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Kangzheng Lv, , , Yuan Zhang, , , Ke Tang, , , Wei Huang, , , Feng Chen, , , Meihua Chen*, , , Yan Wang*, , and , Juan Zhang*, 
{"title":"A Machine Learning-Driven Cyclic Optimizing Strategy for the Construction of Paper-Based Microfluidic Devices in the Early Diagnosis of Periodontitis","authors":"Kangzheng Lv,&nbsp;, ,&nbsp;Yuan Zhang,&nbsp;, ,&nbsp;Ke Tang,&nbsp;, ,&nbsp;Wei Huang,&nbsp;, ,&nbsp;Feng Chen,&nbsp;, ,&nbsp;Meihua Chen*,&nbsp;, ,&nbsp;Yan Wang*,&nbsp;, and ,&nbsp;Juan Zhang*,&nbsp;","doi":"10.1021/acssensors.5c02031","DOIUrl":null,"url":null,"abstract":"<p >The lack of effective optimization strategies hinders the optimal performance of paper-based microfluidic analytical devices (μPADs). In this work, a Machine Learning-driven Computer vision-BP Neural Networks-Genetic Algorithm-based Cyclic Optimizing Strategy (CNGCOS) has been explored to assist in the parameter optimization and engineering of the μPADs. With dual-signal output of color intensity (CI) and colorimetric distance (CD), the optimized μPADs can serve for rapid point-of-care detection of salivary hemoglobin (Hb), an early biomarker for the diagnosis of periodontitis. Moreover, the CNGCOS-assisted μPADs demonstrates high accuracy and superior sensitivity, with an <i>R</i><sup>2</sup> value of 0.998 and a detection limit as low as 1.57 μg/mL for CI output, and an <i>R</i><sup>2</sup> value of 0.992 with a detection limit of 3 μg/mL for CD output. Furthermore, the constructed CNGCOS-assisted μPADs have been applied for the analysis of clinical saliva samples for early diagnosis of periodontitis. Successful detection in 103 clinical cases further validates the exceptional performance and accuracy of the CNGCOS-assisted μPADs. Therefore, the explored CNGCOS has great potential for the optimization of engineering devices for early diagnosis and treatment of diseases.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 9","pages":"7002–7013"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.5c02031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The lack of effective optimization strategies hinders the optimal performance of paper-based microfluidic analytical devices (μPADs). In this work, a Machine Learning-driven Computer vision-BP Neural Networks-Genetic Algorithm-based Cyclic Optimizing Strategy (CNGCOS) has been explored to assist in the parameter optimization and engineering of the μPADs. With dual-signal output of color intensity (CI) and colorimetric distance (CD), the optimized μPADs can serve for rapid point-of-care detection of salivary hemoglobin (Hb), an early biomarker for the diagnosis of periodontitis. Moreover, the CNGCOS-assisted μPADs demonstrates high accuracy and superior sensitivity, with an R2 value of 0.998 and a detection limit as low as 1.57 μg/mL for CI output, and an R2 value of 0.992 with a detection limit of 3 μg/mL for CD output. Furthermore, the constructed CNGCOS-assisted μPADs have been applied for the analysis of clinical saliva samples for early diagnosis of periodontitis. Successful detection in 103 clinical cases further validates the exceptional performance and accuracy of the CNGCOS-assisted μPADs. Therefore, the explored CNGCOS has great potential for the optimization of engineering devices for early diagnosis and treatment of diseases.

Abstract Image

基于机器学习的纸基微流控装置构建循环优化策略在牙周炎早期诊断中的应用。
缺乏有效的优化策略阻碍了纸基微流控分析装置(μ pad)性能的优化。本文提出了一种机器学习驱动的计算机视觉- bp神经网络-基于遗传算法的循环优化策略(CNGCOS),以辅助μ pad的参数优化和工程化。优化后的μPADs具有颜色强度(CI)和比色距离(CD)双信号输出,可用于快速检测唾液血红蛋白(Hb),这是牙周炎诊断的早期生物标志物。cngcos辅助的μPADs具有较高的准确度和灵敏度,CI输出的R2值为0.998,检出限低至1.57 μg/mL; CD输出的R2值为0.992,检出限低至3 μg/mL。此外,构建的cngcos辅助μPADs已应用于临床唾液样品的分析,可用于牙周炎的早期诊断。103例临床病例的成功检测进一步验证了cngcos辅助μPADs的优异性能和准确性。因此,所探索的CNGCOS在疾病早期诊断和治疗的工程设备优化方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信