Copper Single‐Atom Decorated Microfibrous Catalysts for Continuous‐Flow Reduction of Nitroarenes

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiahan Zhao, Yingshuang Li, Zhuoyuan Bi, Guanwu Lian, Guokang Chen, Pei Liu, Yuan Meng, Fangrun Jin, Xiaoxu Zhao, Zhonghua Li, Jianyong Feng, Jiangbo Xi, Zhongxin Chen
{"title":"Copper Single‐Atom Decorated Microfibrous Catalysts for Continuous‐Flow Reduction of Nitroarenes","authors":"Jiahan Zhao, Yingshuang Li, Zhuoyuan Bi, Guanwu Lian, Guokang Chen, Pei Liu, Yuan Meng, Fangrun Jin, Xiaoxu Zhao, Zhonghua Li, Jianyong Feng, Jiangbo Xi, Zhongxin Chen","doi":"10.1002/adfm.202521090","DOIUrl":null,"url":null,"abstract":"Continuous‐flow fixed‐bed reactors effectively bridge laboratory research and industrial production. As the key component, the catalyst module must demonstrate high catalytic activity and rapid reactant distribution to maximize the catalytic turnover. Herein, a facile strategy is proposed to fabricate a microfibrous catalyst by decorating Cu single atoms (Cu<jats:sub>1</jats:sub>) on composite microfiber (CMF) made from N‐doped holey graphene (NHG) and regenerated cellulose of waste paper. Benefiting from the high density of atomic metal species, maximized utilization of active sites, strong metal‐support interactions, and fibrous morphology with adjustable packing density, such a CMF‐supported Cu single‐atom catalyst (Cu<jats:sub>1</jats:sub>/CMF) displayed a benchmarking processing capacity of 1.92 mmol mg<jats:sub>cat</jats:sub><jats:sup>−1</jats:sup> h<jats:sup>−1</jats:sup> and superior durability (≥ 25 cycles) for catalytic reduction of nitroarenes, surpassing the reported catalysts. This work opens new possibilities for continuous‐flow catalysis in organic transformations in a greener and more sustainable way.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"24 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202521090","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous‐flow fixed‐bed reactors effectively bridge laboratory research and industrial production. As the key component, the catalyst module must demonstrate high catalytic activity and rapid reactant distribution to maximize the catalytic turnover. Herein, a facile strategy is proposed to fabricate a microfibrous catalyst by decorating Cu single atoms (Cu1) on composite microfiber (CMF) made from N‐doped holey graphene (NHG) and regenerated cellulose of waste paper. Benefiting from the high density of atomic metal species, maximized utilization of active sites, strong metal‐support interactions, and fibrous morphology with adjustable packing density, such a CMF‐supported Cu single‐atom catalyst (Cu1/CMF) displayed a benchmarking processing capacity of 1.92 mmol mgcat−1 h−1 and superior durability (≥ 25 cycles) for catalytic reduction of nitroarenes, surpassing the reported catalysts. This work opens new possibilities for continuous‐flow catalysis in organic transformations in a greener and more sustainable way.
铜单原子修饰微纤维催化剂用于硝基芳烃的连续流动还原
连续流固定床反应器有效地连接了实验室研究和工业生产。催化剂模块作为关键部件,必须具有较高的催化活性和快速的反应物分布,以最大限度地提高催化转化率。本文提出了一种简单的策略,通过在含氮多孔石墨烯(NHG)和废纸再生纤维素制成的复合微纤维(CMF)上装饰Cu单原子(Cu1)来制备微纤维催化剂。得益于金属原子的高密度、活性位点的最大化利用、强的金属-支撑相互作用和可调节堆积密度的纤维形态,这种CMF -负载Cu单原子催化剂(Cu1/CMF)显示出1.92 mmol mgcat−1 h−1的基准处理能力和优异的耐久性(≥25次循环),催化还原硝基芳烃,超过了报道的催化剂。这项工作为以更绿色和更可持续的方式进行有机转化的连续流催化开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信