Parallelized telecom quantum networking with an ytterbium-171 atom array

IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Lintao Li, Xiye Hu, Zhubing Jia, William Huie, Won Kyu Calvin Sun, Aakash, Yuhao Dong, Narisak Hiri-O-Tuppa, Jacob P. Covey
{"title":"Parallelized telecom quantum networking with an ytterbium-171 atom array","authors":"Lintao Li, Xiye Hu, Zhubing Jia, William Huie, Won Kyu Calvin Sun, Aakash, Yuhao Dong, Narisak Hiri-O-Tuppa, Jacob P. Covey","doi":"10.1038/s41567-025-03022-4","DOIUrl":null,"url":null,"abstract":"<p>The integration of quantum computers and sensors into a quantum network enables new capabilities in quantum information science. Most networks with atom-like qubits operate at visible or near-ultraviolet wavelengths and require conversion to the telecom band for long-distance communication, which reduces efficiency and potentially introduces noise. Here we report high-fidelity entanglement between ytterbium-171 atoms and optical photons generated directly in the telecommunication band, where fibre loss is low. The nuclear spin of the atom is entangled with a single photon in the time-bin basis, yielding a high atom-measurement-corrected atom–photon Bell state fidelity. This can be further improved by addressing photon measurement errors. By imaging the atom array onto an optical fibre array, we also implement a parallelized networking protocol that can increase the remote entanglement rate proportionately with the number of channels. We also preserve coherence on a memory qubit during operations on communication qubits. These results support the integration of atomic systems into scalable quantum networks.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"41 1","pages":""},"PeriodicalIF":18.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-03022-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of quantum computers and sensors into a quantum network enables new capabilities in quantum information science. Most networks with atom-like qubits operate at visible or near-ultraviolet wavelengths and require conversion to the telecom band for long-distance communication, which reduces efficiency and potentially introduces noise. Here we report high-fidelity entanglement between ytterbium-171 atoms and optical photons generated directly in the telecommunication band, where fibre loss is low. The nuclear spin of the atom is entangled with a single photon in the time-bin basis, yielding a high atom-measurement-corrected atom–photon Bell state fidelity. This can be further improved by addressing photon measurement errors. By imaging the atom array onto an optical fibre array, we also implement a parallelized networking protocol that can increase the remote entanglement rate proportionately with the number of channels. We also preserve coherence on a memory qubit during operations on communication qubits. These results support the integration of atomic systems into scalable quantum networks.

Abstract Image

利用镱-171原子阵列的并行电信量子网络
将量子计算机和传感器集成到量子网络中可以实现量子信息科学的新功能。大多数具有原子状量子比特的网络在可见光或近紫外波长下运行,需要转换到电信频段进行长距离通信,这降低了效率,并可能引入噪声。在这里,我们报告了在光纤损耗低的电信波段中直接产生的镱-171原子和光子之间的高保真纠缠。原子的核自旋在时间仓基础上与单个光子纠缠,产生高的原子测量校正原子-光子贝尔态保真度。这可以通过解决光子测量误差进一步改进。通过将原子阵列成像到光纤阵列上,我们还实现了一种并行化的网络协议,该协议可以随信道数量成比例地增加远程纠缠率。我们还在通信量子位的操作中保持了存储量子位的相干性。这些结果支持将原子系统集成到可扩展的量子网络中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信