{"title":"Silica-based nanopesticides vs. non-nano formulations: a comparative study for sustainable agriculture","authors":"Y. L. Zeng, M. Motola","doi":"10.1039/d5en00408j","DOIUrl":null,"url":null,"abstract":"The use of nanopesticides has emerged as a sustainable alternative to conventional formulations, offering improved delivery and minimized environmental harm. This review critically analyzes 99 peer-reviewed studies from 2016 to 2024, comparing silica-based nanopesticides to their non-nano counterparts in terms of physicochemical properties, efficacy, and environmental performance. Silica-based nanoparticles (SiO<small><sub>2</sub></small> NPs), with high surface area, tunable porosity, and excellent biocompatibility, are shown to improve bioavailability, photostability, and controlled-release efficiency. On average, these nanoformulations demonstrate 32% greater pest control efficacy than conventional alternatives. Special attention is given to particle size, polydispersity index (PDI), and responsiveness to external environmental triggers such as pH, temperature, and ultraviolet (UV) exposure. This review also examines the uptake and translocation pathways of silica nanocarriers in plants and their interaction with active ingredients (AIs) at the molecular level. Despite laboratory success, limited field studies and unclear regulatory frameworks restrict their broader application. The porous nature of silica enables high pesticide loading and environmental responsiveness but may also pose long-term accumulation risks. Current definitions of “nanopesticides” based solely on particle size are critically challenged, as many silica-based formulations exceed the 100 nm threshold. Future efforts should prioritize biodegradable silica hybrids, scalable synthesis, and robust, multi-season field validation across diverse agroecological contexts. This review is the first to systematically compare silica-based and non-nano pesticide systems, offering comprehensive insights into performance trade-offs and practical limitations. Our findings highlight the urgent need for interdisciplinary research and harmonized regulatory frameworks to facilitate the safe and effective integration of silica-based nanocarriers into real-world agricultural practice.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"74 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d5en00408j","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of nanopesticides has emerged as a sustainable alternative to conventional formulations, offering improved delivery and minimized environmental harm. This review critically analyzes 99 peer-reviewed studies from 2016 to 2024, comparing silica-based nanopesticides to their non-nano counterparts in terms of physicochemical properties, efficacy, and environmental performance. Silica-based nanoparticles (SiO2 NPs), with high surface area, tunable porosity, and excellent biocompatibility, are shown to improve bioavailability, photostability, and controlled-release efficiency. On average, these nanoformulations demonstrate 32% greater pest control efficacy than conventional alternatives. Special attention is given to particle size, polydispersity index (PDI), and responsiveness to external environmental triggers such as pH, temperature, and ultraviolet (UV) exposure. This review also examines the uptake and translocation pathways of silica nanocarriers in plants and their interaction with active ingredients (AIs) at the molecular level. Despite laboratory success, limited field studies and unclear regulatory frameworks restrict their broader application. The porous nature of silica enables high pesticide loading and environmental responsiveness but may also pose long-term accumulation risks. Current definitions of “nanopesticides” based solely on particle size are critically challenged, as many silica-based formulations exceed the 100 nm threshold. Future efforts should prioritize biodegradable silica hybrids, scalable synthesis, and robust, multi-season field validation across diverse agroecological contexts. This review is the first to systematically compare silica-based and non-nano pesticide systems, offering comprehensive insights into performance trade-offs and practical limitations. Our findings highlight the urgent need for interdisciplinary research and harmonized regulatory frameworks to facilitate the safe and effective integration of silica-based nanocarriers into real-world agricultural practice.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis