Computational design of sequence-specific DNA-binding proteins

Cameron J. Glasscock, Robert J. Pecoraro, Ryan McHugh, Lindsey A. Doyle, Wei Chen, Olivier Boivin, Beau Lonnquist, Emily Na, Yuliya Politanska, Hugh K. Haddox, David Cox, Christoffer Norn, Brian Coventry, Inna Goreshnik, Dionne Vafeados, Gyu Rie Lee, Raluca Gordân, Barry L. Stoddard, Frank DiMaio, David Baker
{"title":"Computational design of sequence-specific DNA-binding proteins","authors":"Cameron J. Glasscock, Robert J. Pecoraro, Ryan McHugh, Lindsey A. Doyle, Wei Chen, Olivier Boivin, Beau Lonnquist, Emily Na, Yuliya Politanska, Hugh K. Haddox, David Cox, Christoffer Norn, Brian Coventry, Inna Goreshnik, Dionne Vafeados, Gyu Rie Lee, Raluca Gordân, Barry L. Stoddard, Frank DiMaio, David Baker","doi":"10.1038/s41594-025-01669-4","DOIUrl":null,"url":null,"abstract":"<p>Sequence-specific DNA-binding proteins (DBPs) have critical roles in biology and biotechnology and there has been considerable interest in the engineering of DBPs with new or altered specificities for genome editing and other applications. While there has been some success in reprogramming naturally occurring DBPs using selection methods, the computational design of new DBPs that recognize arbitrary target sites remains an outstanding challenge. We describe a computational method for the design of small DBPs that recognize short specific target sequences through interactions with bases in the major groove and use this method to generate binders for five distinct DNA targets with mid-nanomolar to high-nanomolar affinities. The individual binding modules have specificity closely matching the computational models at as many as six base-pair positions and higher-order specificity can be achieved by rigidly positioning the binders along the DNA double helix using RFdiffusion. The crystal structure of a designed DBP–target site complex is in close agreement with the design model and the designed DBPs function in both <i>Escherichia coli</i> and mammalian cells to repress and activate transcription of neighboring genes. Our method provides a route to small and, hence, readily deliverable sequence-specific DBPs for gene regulation and editing.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01669-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sequence-specific DNA-binding proteins (DBPs) have critical roles in biology and biotechnology and there has been considerable interest in the engineering of DBPs with new or altered specificities for genome editing and other applications. While there has been some success in reprogramming naturally occurring DBPs using selection methods, the computational design of new DBPs that recognize arbitrary target sites remains an outstanding challenge. We describe a computational method for the design of small DBPs that recognize short specific target sequences through interactions with bases in the major groove and use this method to generate binders for five distinct DNA targets with mid-nanomolar to high-nanomolar affinities. The individual binding modules have specificity closely matching the computational models at as many as six base-pair positions and higher-order specificity can be achieved by rigidly positioning the binders along the DNA double helix using RFdiffusion. The crystal structure of a designed DBP–target site complex is in close agreement with the design model and the designed DBPs function in both Escherichia coli and mammalian cells to repress and activate transcription of neighboring genes. Our method provides a route to small and, hence, readily deliverable sequence-specific DBPs for gene regulation and editing.

Abstract Image

序列特异性dna结合蛋白的计算设计
序列特异性dna结合蛋白(DBPs)在生物学和生物技术中起着至关重要的作用,人们对具有新的或改变特异性的DBPs的工程设计非常感兴趣,用于基因组编辑和其他应用。虽然在使用选择方法对自然发生的dbp进行重编程方面取得了一些成功,但识别任意目标位点的新dbp的计算设计仍然是一个突出的挑战。我们描述了一种设计小DBPs的计算方法,该方法通过与主凹槽中的碱基相互作用来识别短的特定目标序列,并使用该方法生成具有中纳摩尔到高纳摩尔亲和力的五种不同DNA靶标的结合物。单个结合模块在多达6个碱基对位置上具有与计算模型密切匹配的特异性,并且可以通过使用rf扩散沿DNA双螺旋严格定位结合体来实现更高阶的特异性。设计的dbp靶位复合物的晶体结构与设计模型密切一致,并且设计的dbp在大肠杆菌和哺乳动物细胞中都具有抑制和激活邻近基因转录的功能。我们的方法为基因调控和编辑提供了一种小的,因此易于交付的序列特异性dbp。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信