Particle stabilised high internal phase emulsion scaffolds with interconnected porosity facilitate cell migration.

Areli Munive-Olarte, Enes Durgut, Stefaan W Verbruggen, Frederik Claeyssens, Gwendolen C Reilly
{"title":"Particle stabilised high internal phase emulsion scaffolds with interconnected porosity facilitate cell migration.","authors":"Areli Munive-Olarte, Enes Durgut, Stefaan W Verbruggen, Frederik Claeyssens, Gwendolen C Reilly","doi":"10.1088/1748-605X/ae05de","DOIUrl":null,"url":null,"abstract":"<p><p>A key challenge in bone tissue engineering (BTE) is designing structurally supportive scaffolds, mimicking the native bone matrix, yet also highly porous to allow nutrient diffusion, cell infiltration, and proliferation. This study investigated the effect of scaffold interconnectivity on human bone marrow stromal cell (BMSC) behaviour. Highly interconnected, porous scaffolds (polyHIPEs) were fabricated using the emulsion templating method from 2-ethylhexyl acrylate/isobornyl acrylate (IBOA) and stabilised with ∼200 nm IBOA particles. Pore interconnectivity was tuned by varying the internal phase fraction from 75%-85% and characterised by the degree of openness, Euler number, frequency, and size of pore interconnects. The attachment, proliferation, infiltration, and osteogenic differentiation of the BMSC cell line (Y201) were evaluated on these scaffolds. Results showed that high pore interconnectivity facilitated diffusion and cell infiltration throughout the scaffolds. Furthermore, the most interconnected scaffolds enhanced osteogenic differentiation of Y201 cells, as evidenced by elevated alkaline phosphatase activity and increased calcium and collagen production compared to less interconnected scaffolds. These findings emphasise the importance of scaffold interconnectivity in BTE for efficient nutrient transport, facilitating cell migration and infiltration, and supporting the development of interconnected cell networks that positively influence osteogenic differentiation.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae05de","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A key challenge in bone tissue engineering (BTE) is designing structurally supportive scaffolds, mimicking the native bone matrix, yet also highly porous to allow nutrient diffusion, cell infiltration, and proliferation. This study investigated the effect of scaffold interconnectivity on human bone marrow stromal cell (BMSC) behaviour. Highly interconnected, porous scaffolds (polyHIPEs) were fabricated using the emulsion templating method from 2-ethylhexyl acrylate/isobornyl acrylate (IBOA) and stabilised with ∼200 nm IBOA particles. Pore interconnectivity was tuned by varying the internal phase fraction from 75%-85% and characterised by the degree of openness, Euler number, frequency, and size of pore interconnects. The attachment, proliferation, infiltration, and osteogenic differentiation of the BMSC cell line (Y201) were evaluated on these scaffolds. Results showed that high pore interconnectivity facilitated diffusion and cell infiltration throughout the scaffolds. Furthermore, the most interconnected scaffolds enhanced osteogenic differentiation of Y201 cells, as evidenced by elevated alkaline phosphatase activity and increased calcium and collagen production compared to less interconnected scaffolds. These findings emphasise the importance of scaffold interconnectivity in BTE for efficient nutrient transport, facilitating cell migration and infiltration, and supporting the development of interconnected cell networks that positively influence osteogenic differentiation.

颗粒稳定的高内相乳化液支架具有相互连接的孔隙度,有利于细胞迁移。
骨组织工程(BTE)的一个关键挑战是设计结构上支持支架,模仿天然骨基质,但也高度多孔,以允许营养物质扩散,细胞浸润和增殖。本研究探讨了支架相互连接对人骨髓基质细胞(BMSC)行为的影响。以丙烯酸2-乙基己基酯/丙烯酸异硼酸酯(IBOA)为原料,采用乳液模板法制备了高度互连的多孔支架(polyHIPEs),并用~200 nm的IBOA颗粒进行稳定。通过改变75%到85%的内相分数来调节孔隙互连性,并以孔隙互连的开放程度(DOO)、欧拉数、频率和大小为特征。观察BMSC细胞系(Y201)在支架上的附着、增殖、浸润和成骨分化情况。结果表明,高孔隙互联性促进了支架的扩散和细胞浸润。此外,与连接较少的支架相比,连接最紧密的支架增强了Y201细胞的成骨分化,这可以通过提高碱性磷酸酶(ALP)活性、增加钙和胶原生成来证明。这些发现强调了支架互连在BTE中对有效的营养运输、促进细胞迁移和浸润以及支持相互连接的细胞网络的发展的重要性,这些网络对成骨分化有积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信