Multi-modal image analysis for large-scale cancer tissue studies within IMMUcan.

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-09-15 Epub Date: 2025-09-09 DOI:10.1016/j.crmeth.2025.101170
Nils Eling, Julien Dorier, Sylvie Rusakiewicz, Robin Liechti, Preethi Devanand, Michelle Daniel, Jonas Windhager, Bruno Palau Fernandez, Sophie Déglise, Lucie Despland, Abdelkader Benyagoub, Marcin Możejko, Dawid Uchal, Ewa Szczurek, Alexander Loboda, Daaf Sandkuijl, Nikesh Parsotam, Henoch S Hong, Marie Morfouace, Nicolas Guex, George Coukos, Bernd Bodenmiller, Stephanie Tissot, Daniel Schulz
{"title":"Multi-modal image analysis for large-scale cancer tissue studies within IMMUcan.","authors":"Nils Eling, Julien Dorier, Sylvie Rusakiewicz, Robin Liechti, Preethi Devanand, Michelle Daniel, Jonas Windhager, Bruno Palau Fernandez, Sophie Déglise, Lucie Despland, Abdelkader Benyagoub, Marcin Możejko, Dawid Uchal, Ewa Szczurek, Alexander Loboda, Daaf Sandkuijl, Nikesh Parsotam, Henoch S Hong, Marie Morfouace, Nicolas Guex, George Coukos, Bernd Bodenmiller, Stephanie Tissot, Daniel Schulz","doi":"10.1016/j.crmeth.2025.101170","DOIUrl":null,"url":null,"abstract":"<p><p>In cancer research, multiplexed imaging allows detailed characterization of the tumor microenvironment (TME) and its link to patient prognosis. The integrated immunoprofiling of large adaptive cancer patient cohorts (IMMUcan) consortium collects multi-modal imaging data from thousands of patients with cancer to perform broad molecular and cellular spatial profiling. Here, we describe and compare two workflows for multiplexed immunofluorescence (mIF) and imaging mass cytometry (IMC) developed within IMMUcan to enable the generation of standardized data for cancer tissue analysis. The IFQuant software supports web-based, user-friendly, and reproducible analysis of mIF data. High sample throughput for IMC is achieved by optimizing experimental protocols, developing a robotic arm for automated slide loading, and classification-based cell typing. Using our manually labeled single-cell data, we show that tree-based methods outperform other cell-phenotyping tools. These pipelines form the basis for multiplexed image analysis within IMMUcan, and we summarize our learnings from 5 years of development and optimization.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101170"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In cancer research, multiplexed imaging allows detailed characterization of the tumor microenvironment (TME) and its link to patient prognosis. The integrated immunoprofiling of large adaptive cancer patient cohorts (IMMUcan) consortium collects multi-modal imaging data from thousands of patients with cancer to perform broad molecular and cellular spatial profiling. Here, we describe and compare two workflows for multiplexed immunofluorescence (mIF) and imaging mass cytometry (IMC) developed within IMMUcan to enable the generation of standardized data for cancer tissue analysis. The IFQuant software supports web-based, user-friendly, and reproducible analysis of mIF data. High sample throughput for IMC is achieved by optimizing experimental protocols, developing a robotic arm for automated slide loading, and classification-based cell typing. Using our manually labeled single-cell data, we show that tree-based methods outperform other cell-phenotyping tools. These pipelines form the basis for multiplexed image analysis within IMMUcan, and we summarize our learnings from 5 years of development and optimization.

IMMUcan中大规模癌症组织研究的多模态图像分析。
在癌症研究中,多路成像允许详细表征肿瘤微环境(TME)及其与患者预后的联系。大型适应性癌症患者队列综合免疫图谱(IMMUcan)联盟收集来自数千名癌症患者的多模态成像数据,以进行广泛的分子和细胞空间图谱。在这里,我们描述并比较了IMMUcan中开发的复用免疫荧光(mIF)和成像质量细胞术(IMC)的两个工作流程,以生成用于癌症组织分析的标准化数据。IFQuant软件支持基于web的、用户友好的、可重复的mIF数据分析。通过优化实验方案,开发用于自动载玻片加载的机械臂和基于分类的细胞分型,实现了IMC的高样品吞吐量。使用我们手工标记的单细胞数据,我们表明基于树的方法优于其他细胞表型工具。这些管道构成了IMMUcan中复用图像分析的基础,我们总结了5年的开发和优化经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信