Franklin Vinny Medina Nunes, Luiza Marques Prates Behrens, Rafael Diogo Weimer, Gabriela Flores Gonçalves, Guilherme da Silva Fernandes, Márcio Dorn
{"title":"Deep learning methods and applications in single-cell multimodal data integration.","authors":"Franklin Vinny Medina Nunes, Luiza Marques Prates Behrens, Rafael Diogo Weimer, Gabriela Flores Gonçalves, Guilherme da Silva Fernandes, Márcio Dorn","doi":"10.1039/d5mo00062a","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of multimodal single-cell omics data is a state-of-art strategy for deciphering cellular heterogeneity and gene regulatory mechanisms. Recent advances in single-cell technologies have enabled the comprehensive characterization of cellular states and their interactions. However, integrating these high-dimensional and heterogeneous datasets poses significant computational challenges, including batch effects, sparsity, and modality alignment. Deep learning has shown great promise in addressing these issues through neural network-based frameworks, including variational autoencoders (VAEs) and graph neural networks (GNNs). In this Review, we examine cutting-edge deep learning methodologies for integrating single-cell multimodal data, discussing their architectures, applications, and limitations. We highlight key tools such as sciCAN, scJoint, and scMaui, which use deep learning techniques to harmonize various omics layers, improve feature extraction, and improve downstream biological analyses. Despite significant advancements, it remains challenging to ensure model interpretability, scalability, and generalizability across different datasets. Future directions of research in this field include the development of self-supervised learning strategies, transformer-based architectures, and federated learning frameworks to enhance the robustness and reproducibility of single-cell multi-omics integration.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/d5mo00062a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of multimodal single-cell omics data is a state-of-art strategy for deciphering cellular heterogeneity and gene regulatory mechanisms. Recent advances in single-cell technologies have enabled the comprehensive characterization of cellular states and their interactions. However, integrating these high-dimensional and heterogeneous datasets poses significant computational challenges, including batch effects, sparsity, and modality alignment. Deep learning has shown great promise in addressing these issues through neural network-based frameworks, including variational autoencoders (VAEs) and graph neural networks (GNNs). In this Review, we examine cutting-edge deep learning methodologies for integrating single-cell multimodal data, discussing their architectures, applications, and limitations. We highlight key tools such as sciCAN, scJoint, and scMaui, which use deep learning techniques to harmonize various omics layers, improve feature extraction, and improve downstream biological analyses. Despite significant advancements, it remains challenging to ensure model interpretability, scalability, and generalizability across different datasets. Future directions of research in this field include the development of self-supervised learning strategies, transformer-based architectures, and federated learning frameworks to enhance the robustness and reproducibility of single-cell multi-omics integration.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.