Emanuele Marzetti , Riccardo Calvani , Helio José Coelho-Junior , Francesco Landi , Anna Picca
{"title":"Defective mitochondrial quality control in the aging of skeletal muscle","authors":"Emanuele Marzetti , Riccardo Calvani , Helio José Coelho-Junior , Francesco Landi , Anna Picca","doi":"10.1016/j.mad.2025.112112","DOIUrl":null,"url":null,"abstract":"<div><div>Age-related skeletal muscle decline is a major contributor to frailty, functional impairment, and loss of independence in advanced age. This process is characterized by selective atrophy of type II fibers, impaired excitation–contraction coupling, and reduced regenerative capacity. Emerging evidence implicates mitochondrial dysfunction as a central mechanism in the disruption of muscle homeostasis with age. Beyond ATP production, mitochondria orchestrate redox signaling, calcium handling, and apoptotic pathways, which are increasingly compromised in aged muscle due to chronic oxidative stress and defective quality control. High-resolution respirometry has revealed intrinsic, lifestyle-independent declines in mitochondrial respiratory capacity, while large-scale phenotyping and transcriptomic profiling have established robust associations between mitochondrial integrity, physical performance, and mobility. These findings have prompted a paradigm shift from static descriptions of mitochondrial decline toward dynamic analyses of mitochondrial signaling networks and stress adaptability. Several quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy, and vesicle trafficking, emerge as critical regulators of myocyte integrity. Understanding how these systems deteriorate with age will be pivotal for developing therapeutic targets to preserve muscle function, mitigate sarcopenia, and extend health span.</div></div>","PeriodicalId":18340,"journal":{"name":"Mechanisms of Ageing and Development","volume":"228 ","pages":"Article 112112"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Ageing and Development","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047637425000880","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related skeletal muscle decline is a major contributor to frailty, functional impairment, and loss of independence in advanced age. This process is characterized by selective atrophy of type II fibers, impaired excitation–contraction coupling, and reduced regenerative capacity. Emerging evidence implicates mitochondrial dysfunction as a central mechanism in the disruption of muscle homeostasis with age. Beyond ATP production, mitochondria orchestrate redox signaling, calcium handling, and apoptotic pathways, which are increasingly compromised in aged muscle due to chronic oxidative stress and defective quality control. High-resolution respirometry has revealed intrinsic, lifestyle-independent declines in mitochondrial respiratory capacity, while large-scale phenotyping and transcriptomic profiling have established robust associations between mitochondrial integrity, physical performance, and mobility. These findings have prompted a paradigm shift from static descriptions of mitochondrial decline toward dynamic analyses of mitochondrial signaling networks and stress adaptability. Several quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy, and vesicle trafficking, emerge as critical regulators of myocyte integrity. Understanding how these systems deteriorate with age will be pivotal for developing therapeutic targets to preserve muscle function, mitigate sarcopenia, and extend health span.
期刊介绍:
Mechanisms of Ageing and Development is a multidisciplinary journal aimed at revealing the molecular, biochemical and biological mechanisms that underlie the processes of aging and development in various species as well as of age-associated diseases. Emphasis is placed on investigations that delineate the contribution of macromolecular damage and cytotoxicity, genetic programs, epigenetics and genetic instability, mitochondrial function, alterations of metabolism and innovative anti-aging approaches. For all of the mentioned studies it is necessary to address the underlying mechanisms.
Mechanisms of Ageing and Development publishes original research, review and mini-review articles. The journal also publishes Special Issues that focus on emerging research areas. Special issues may include all types of articles following peered review. Proposals should be sent directly to the Editor-in-Chief.