Daniel Krentzel, Matouš Elphick, Marie-Charlotte Domart, Christopher J. Peddie, Romain F. Laine, Cameron Shand, Ricardo Henriques, Lucy M. Collinson, Martin L. Jones
{"title":"CLEM-Reg: an automated point cloud-based registration algorithm for volume correlative light and electron microscopy","authors":"Daniel Krentzel, Matouš Elphick, Marie-Charlotte Domart, Christopher J. Peddie, Romain F. Laine, Cameron Shand, Ricardo Henriques, Lucy M. Collinson, Martin L. Jones","doi":"10.1038/s41592-025-02794-0","DOIUrl":null,"url":null,"abstract":"Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques. Point clouds are derived from segmentations of common structures in each modality, created by state-of-the-art open-source methods. CLEM-Reg drastically reduces the registration time of vCLEM datasets to a few minutes and achieves correlation of fluorescent signal to submicron target structures in electron microscopy on three newly acquired vCLEM benchmark datasets. CLEM-Reg was then used to automatically obtain vCLEM overlays to unambiguously identify TGN46-positive transport carriers involved in protein trafficking between the trans-Golgi network and plasma membrane. Datasets are available on EMPIAR and BioStudies, and a napari plugin is provided to aid end-user adoption. CLEM-Reg automates the three-dimensional alignment of volume correlative light and electron microscopy datasets by leveraging probabilistic point cloud registration techniques for fast and accurate results across diverse datasets.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 9","pages":"1923-1934"},"PeriodicalIF":32.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-025-02794-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques. Point clouds are derived from segmentations of common structures in each modality, created by state-of-the-art open-source methods. CLEM-Reg drastically reduces the registration time of vCLEM datasets to a few minutes and achieves correlation of fluorescent signal to submicron target structures in electron microscopy on three newly acquired vCLEM benchmark datasets. CLEM-Reg was then used to automatically obtain vCLEM overlays to unambiguously identify TGN46-positive transport carriers involved in protein trafficking between the trans-Golgi network and plasma membrane. Datasets are available on EMPIAR and BioStudies, and a napari plugin is provided to aid end-user adoption. CLEM-Reg automates the three-dimensional alignment of volume correlative light and electron microscopy datasets by leveraging probabilistic point cloud registration techniques for fast and accurate results across diverse datasets.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.