Oliver C K Inge, Elias Copin, Jake Cornwall-Scoones, Borzo Gharibi, Irene Rodriguez-Hernandez, Pablo Soro-Barrio, Molly Strom, Probir Chakravarty, James Briscoe, Silvia D M Santos
{"title":"Combinatorial BMP4 and activin direct the choice between alternate routes to endoderm in a stem cell model of human gastrulation.","authors":"Oliver C K Inge, Elias Copin, Jake Cornwall-Scoones, Borzo Gharibi, Irene Rodriguez-Hernandez, Pablo Soro-Barrio, Molly Strom, Probir Chakravarty, James Briscoe, Silvia D M Santos","doi":"10.1016/j.devcel.2025.08.009","DOIUrl":null,"url":null,"abstract":"<p><p>Lineage specification requires accurate interpretation of multiple signaling cues. However, how combinatorial signaling histories influence fate outcomes remains unclear. We combined single-cell transcriptomics, live-cell imaging, and mathematical modeling to explore how activin and bone morphogenetic protein 4 (BMP4) guide fate specification during human gastrulation. We see that these signals interact both synergistically and antagonistically to drive fate decisions. We find that definitive endoderm arises from lineage convergence: a direct route from pluripotency and an indirect route via a mesoderm progenitor state. Cells pass through temporal windows of signaling competency, and the relative concentration of activin and BMP4 dictates the trajectory choice. The efficiency between routes is underpinned by a dual role of BMP4 in inducing mesoderm genes while promoting pluripotency exit. This work underscores that the combination of signals a cell is exposed to not only directs its final fate but also the developmental route taken, suggesting lineage convergence enhances robustness in fate specification.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":" ","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.08.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lineage specification requires accurate interpretation of multiple signaling cues. However, how combinatorial signaling histories influence fate outcomes remains unclear. We combined single-cell transcriptomics, live-cell imaging, and mathematical modeling to explore how activin and bone morphogenetic protein 4 (BMP4) guide fate specification during human gastrulation. We see that these signals interact both synergistically and antagonistically to drive fate decisions. We find that definitive endoderm arises from lineage convergence: a direct route from pluripotency and an indirect route via a mesoderm progenitor state. Cells pass through temporal windows of signaling competency, and the relative concentration of activin and BMP4 dictates the trajectory choice. The efficiency between routes is underpinned by a dual role of BMP4 in inducing mesoderm genes while promoting pluripotency exit. This work underscores that the combination of signals a cell is exposed to not only directs its final fate but also the developmental route taken, suggesting lineage convergence enhances robustness in fate specification.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.