Dentate Granule Cell Capacitance Is Stable across the Light/Dark Cycle.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-09-23 Print Date: 2025-09-01 DOI:10.1523/ENEURO.0213-25.2025
Jose Carlos Gonzalez, Reagan L Pennock, Asan F Abdulkareem, Bryan W Luikart, Jacques I Wadiche, Linda Overstreet-Wadiche
{"title":"Dentate Granule Cell Capacitance Is Stable across the Light/Dark Cycle.","authors":"Jose Carlos Gonzalez, Reagan L Pennock, Asan F Abdulkareem, Bryan W Luikart, Jacques I Wadiche, Linda Overstreet-Wadiche","doi":"10.1523/ENEURO.0213-25.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane; thus it is often used as a measure of the cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells (dGCs) and cortical pyramidal cells changes across the light/dark (LD) cycle in a manner that alters synaptic integration. We addressed this potential change in capacitance using a large dataset of dGC recordings from adult male and female mice across the light cycle. Our data show that daily changes in the membrane time constant result from fluctuation in membrane resistance rather than capacitance. We also confirm the ability to resolve changes in neuronal capacitance induced by altering dGC membrane area via acute axotomy or genetically induced overgrowth using either voltage-clamp or current-clamp approaches. Our results demonstrate that the capacitance of dGCs remains stable over the LD cycle and that daily changes in the membrane time constant and excitability are mediated by fluctuations in membrane resistance.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0213-25.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane; thus it is often used as a measure of the cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells (dGCs) and cortical pyramidal cells changes across the light/dark (LD) cycle in a manner that alters synaptic integration. We addressed this potential change in capacitance using a large dataset of dGC recordings from adult male and female mice across the light cycle. Our data show that daily changes in the membrane time constant result from fluctuation in membrane resistance rather than capacitance. We also confirm the ability to resolve changes in neuronal capacitance induced by altering dGC membrane area via acute axotomy or genetically induced overgrowth using either voltage-clamp or current-clamp approaches. Our results demonstrate that the capacitance of dGCs remains stable over the LD cycle and that daily changes in the membrane time constant and excitability are mediated by fluctuations in membrane resistance.

齿状颗粒电池的电容在整个光暗循环中是稳定的。
质膜在神经元的兴奋性和信号传播中起着重要的作用。神经元电容与细胞膜的面积成正比,因此通常被用来衡量相对稳定的细胞大小。最近的研究表明,齿状颗粒细胞和皮质锥体细胞的电容在光-暗循环中以一种改变突触整合的方式变化。我们利用成年雄性和雌性小鼠在整个光周期内的齿状颗粒细胞记录的大型数据集来解决电容的这种潜在变化。我们的数据表明,颗粒细胞膜时间常数的日常变化是由于膜电阻的波动而不是电容的波动。我们还证实了通过急性轴切开术或使用电压钳或电流钳方法通过基因诱导的过度生长来改变齿状颗粒细胞膜面积所引起的神经元电容变化的能力。我们的研究结果表明,齿状颗粒细胞的电容在日常的光暗循环中保持稳定,膜时间常数和兴奋性的日常变化是由膜电阻的波动介导的。越来越多的证据表明,包括齿状回在内的许多大脑区域的神经元兴奋性在光周期中波动。本研究表明齿状回兴奋性神经元的电容在整个光周期内保持稳定,颗粒细胞固有兴奋性的日常变化与膜电阻的变化有关,而不是与电容的变化有关。这些结果支持了传统的观点,即电容是一个很大程度上稳定的性质,反映了神经元宏观解剖结构的静态性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信