Engineering Lignin-Based Tubular Hydrogel Scaffolds for Load-Bearing Biomedical Applications.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-11 DOI:10.1002/cssc.202501520
Muhammad Muddasar, Grace Joyce, Mathilde Pouzier, Aleksandra Serafin, Maurice N Collins
{"title":"Engineering Lignin-Based Tubular Hydrogel Scaffolds for Load-Bearing Biomedical Applications.","authors":"Muhammad Muddasar, Grace Joyce, Mathilde Pouzier, Aleksandra Serafin, Maurice N Collins","doi":"10.1002/cssc.202501520","DOIUrl":null,"url":null,"abstract":"<p><p>The development of mechanically robust, biocompatible, and biodegradable hydrogels remains a significant challenge for biomedical applications involving load-bearing soft tissues. Herein, a tubular lignin-derived hydrogel is engineered to assess its physicochemical, mechanical, and biological properties. Kraft and organosolv lignin are systematically compared at varying crosslinker concentrations to determine their effect on pore morphology, swelling behavior, and mechanical performance. Organosolv lignin formulations at 5% crosslinker concentration demonstrate an optimal balance between strength (ultimate tensile strength: 83.14 ± 0.16 kPa), flexibility (elongation: up to 176%), and hydration (swelling capacity: 261%), and are further fabricated into tubular geometries, with and without polypropylene mesh reinforcement. The reinforced tubular constructs exhibit superior mechanical strength, sustained performance over 100 fatigue cycles, and cytocompatibility with fibroblast cultures (cell viability: 85.5-86.5% after 96 h). These findings highlight the potential of lignin-based hydrogel scaffolds as sustainable, tunable platforms for a broad range of biomedical applications requiring soft, mechanically resilient, and tubular structures, such as tendon repair, vascular conduits, and nerve regeneration.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501520"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501520","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of mechanically robust, biocompatible, and biodegradable hydrogels remains a significant challenge for biomedical applications involving load-bearing soft tissues. Herein, a tubular lignin-derived hydrogel is engineered to assess its physicochemical, mechanical, and biological properties. Kraft and organosolv lignin are systematically compared at varying crosslinker concentrations to determine their effect on pore morphology, swelling behavior, and mechanical performance. Organosolv lignin formulations at 5% crosslinker concentration demonstrate an optimal balance between strength (ultimate tensile strength: 83.14 ± 0.16 kPa), flexibility (elongation: up to 176%), and hydration (swelling capacity: 261%), and are further fabricated into tubular geometries, with and without polypropylene mesh reinforcement. The reinforced tubular constructs exhibit superior mechanical strength, sustained performance over 100 fatigue cycles, and cytocompatibility with fibroblast cultures (cell viability: 85.5-86.5% after 96 h). These findings highlight the potential of lignin-based hydrogel scaffolds as sustainable, tunable platforms for a broad range of biomedical applications requiring soft, mechanically resilient, and tubular structures, such as tendon repair, vascular conduits, and nerve regeneration.

工程木质素基管状水凝胶支架承载生物医学应用。
在涉及承重软组织的生物医学应用中,开发机械坚固、生物相容性和可生物降解的水凝胶仍然是一个重大挑战。本文设计了一种管状木质素衍生的水凝胶,以评估其物理化学,机械和生物特性。在不同的交联剂浓度下,系统地比较了硫酸盐和有机溶剂木质素,以确定它们对孔隙形态、膨胀行为和机械性能的影响。5%交联剂浓度下的有机溶剂木质素配方在强度(极限抗拉强度:83.14±0.16 kPa)、柔韧性(伸长率:高达176%)和水化(膨胀容量:261%)之间表现出最佳平衡,并进一步制成管状几何形状,有或没有聚丙烯网增强。增强管状结构具有优异的机械强度,超过100次疲劳循环的持续性能,以及与成纤维细胞培养的细胞相容性(96小时后细胞存活率:85.5-86.5%)。这些发现突出了木质素基水凝胶支架作为可持续的、可调的平台的潜力,用于广泛的生物医学应用,需要柔软、机械弹性和管状结构,如肌腱修复、血管导管和神经再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信