{"title":"Repopulating Microglia Suppress Peripheral Immune Cell Infiltration to Promote Poststroke Recovery","authors":"Ligen Shi, Lingxiao Lu, Jun Hu, Jiarui Chen, Qia Zhang, Ziyang Jin, Zhen Wang, Zhe Zheng, Jianmin Zhang","doi":"10.1111/cns.70565","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Sustained neuroinflammation following ischemic stroke impedes post-injury tissue repairment and neurological functional recovery. Developing innovative therapeutic strategies that simultaneously suppress detrimental inflammatory cascades and facilitate neurorestorative processes is critical for improving long-term rehabilitation outcomes.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We employed a microglia depletion-repopulation paradigm by administering PLX5622 for 7 days post-ischemia; followed by a 7-day withdrawal period to allow microglia repopulation. Single-cell transcriptomics, behavioral testing, cytokine arrays, flow cytometry, and immunofluorescence were used to assess the effects of microglia repopulation and delineate the transition of reshaped immune microenvironment.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>PLX5622 administration reshaped the poststroke immune microenvironment, promoting neurofunctional recovery. Repopulated microglia adopted a homeostatic phenotype, increasing homeostatic states by ~14.36% and reducing pro-inflammatory states by ~20.17%. This reshaped environment suppressed T cell exhaustion, limited neutrophil terminal differentiation, and promoted a phagocytic macrophage phenotype. Furthermore, we identified that these transitions in infiltrating immune cells may be driven by reduced chemokine production, enhanced blood–brain barrier (BBB) integrity, and transcriptional reprogramming.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Transient microglial depletion and repopulation via PLX5622 during the acute phase post stroke facilitate the recovery of neurological function. This immunomodulatory strategy offers a promising and clinically translationally relevant approach to enhance functional recovery following ischemic brain injury.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"31 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70565","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70565","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Sustained neuroinflammation following ischemic stroke impedes post-injury tissue repairment and neurological functional recovery. Developing innovative therapeutic strategies that simultaneously suppress detrimental inflammatory cascades and facilitate neurorestorative processes is critical for improving long-term rehabilitation outcomes.
Methods
We employed a microglia depletion-repopulation paradigm by administering PLX5622 for 7 days post-ischemia; followed by a 7-day withdrawal period to allow microglia repopulation. Single-cell transcriptomics, behavioral testing, cytokine arrays, flow cytometry, and immunofluorescence were used to assess the effects of microglia repopulation and delineate the transition of reshaped immune microenvironment.
Results
PLX5622 administration reshaped the poststroke immune microenvironment, promoting neurofunctional recovery. Repopulated microglia adopted a homeostatic phenotype, increasing homeostatic states by ~14.36% and reducing pro-inflammatory states by ~20.17%. This reshaped environment suppressed T cell exhaustion, limited neutrophil terminal differentiation, and promoted a phagocytic macrophage phenotype. Furthermore, we identified that these transitions in infiltrating immune cells may be driven by reduced chemokine production, enhanced blood–brain barrier (BBB) integrity, and transcriptional reprogramming.
Conclusion
Transient microglial depletion and repopulation via PLX5622 during the acute phase post stroke facilitate the recovery of neurological function. This immunomodulatory strategy offers a promising and clinically translationally relevant approach to enhance functional recovery following ischemic brain injury.
期刊介绍:
CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.