The Transcription Factor MYB8 Positively Regulates Flavonoid Biosynthesis of Scutellaria baicalensis in Response to Drought Stress.

IF 6.3 1区 生物学 Q1 PLANT SCIENCES
Chong Chen, Xiaofang Zhou, Bo Cao, Shan Feng, Tiantian Bin, Yali Zhang, Pufan Gao, Yumeng Lu, Xian Li, Lianjin Liu, Suying Hu, Bowen Zheng, Guishuang Li, Chengke Bai
{"title":"The Transcription Factor MYB8 Positively Regulates Flavonoid Biosynthesis of Scutellaria baicalensis in Response to Drought Stress.","authors":"Chong Chen, Xiaofang Zhou, Bo Cao, Shan Feng, Tiantian Bin, Yali Zhang, Pufan Gao, Yumeng Lu, Xian Li, Lianjin Liu, Suying Hu, Bowen Zheng, Guishuang Li, Chengke Bai","doi":"10.1111/pce.70178","DOIUrl":null,"url":null,"abstract":"<p><p>Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis. SbMYB8 activation triggered coordinated upregulation of six baicalin biosynthetic genes, elevating total baicalin and aglycones. Heterologous overexpression in Arabidopsis thaliana revealed SbMYB8's conserved regulatory function, driving anthocyanin accumulation (2.3-fold), flavonoid hyperproduction (5.8-fold), and developmental plasticity through enhanced lateral root proliferation. Specifically, we established the first stable S. baicalensis genetic transformation system, enabling tissue-specific dissection of SbMYB8 function. Transgenic OE-SbMYB8 lines exhibited root architectural remodelling (thickened primary roots, increased lateral root density) and root-specific flavonoid amplification (baicalin 1.8-fold; total flavonoids 3.5-fold), coupled with hierarchical induction of 12 pathway genes. Low-dose PEG (2.5%) synergised with SbMYB8 to transiently boost aglycone synthesis, whereas high-dose stress (5%) disrupted this coordination, suppressing biosynthetic machinery and metabolite yields. Mechanistically, yeast one-hybrid and dual-luciferase assays revealed SbMYB8 directly binds cis-elements in target promoters to orchestrate pathway activation. Based on the above results, we propose a SbMYB8-mediated \"drought perception - transcriptional activation - metabolic response\" network and provide transformative tools for precision breeding of stress-resilient medicinal plants.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70178","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis. SbMYB8 activation triggered coordinated upregulation of six baicalin biosynthetic genes, elevating total baicalin and aglycones. Heterologous overexpression in Arabidopsis thaliana revealed SbMYB8's conserved regulatory function, driving anthocyanin accumulation (2.3-fold), flavonoid hyperproduction (5.8-fold), and developmental plasticity through enhanced lateral root proliferation. Specifically, we established the first stable S. baicalensis genetic transformation system, enabling tissue-specific dissection of SbMYB8 function. Transgenic OE-SbMYB8 lines exhibited root architectural remodelling (thickened primary roots, increased lateral root density) and root-specific flavonoid amplification (baicalin 1.8-fold; total flavonoids 3.5-fold), coupled with hierarchical induction of 12 pathway genes. Low-dose PEG (2.5%) synergised with SbMYB8 to transiently boost aglycone synthesis, whereas high-dose stress (5%) disrupted this coordination, suppressing biosynthetic machinery and metabolite yields. Mechanistically, yeast one-hybrid and dual-luciferase assays revealed SbMYB8 directly binds cis-elements in target promoters to orchestrate pathway activation. Based on the above results, we propose a SbMYB8-mediated "drought perception - transcriptional activation - metabolic response" network and provide transformative tools for precision breeding of stress-resilient medicinal plants.

转录因子MYB8正调控黄芩黄酮合成对干旱胁迫的响应
干旱胁迫动态重编程药用植物的特殊代谢。然而,调控应力适应性代谢物合成的转录调控模块仍然缺乏特征。在这里,我们发现SbMYB8是黄芩中一个干旱响应转录因子,在干旱条件下表现出核定位和剂量依赖性诱导。SbMYB8的激活触发了6个黄芩苷合成基因的协同上调,提高了黄芩苷和苷元的总量。拟南芥中SbMYB8的异源过表达揭示了SbMYB8的保守调控功能,通过促进侧根增殖,促进花青素积累(2.3倍)、类黄酮高产(5.8倍)和发育可塑性。具体而言,我们建立了第一个稳定的黄芩遗传转化系统,实现了对SbMYB8功能的组织特异性解剖。转基因e - sbmyb8表现出根系结构重塑(主根增粗,侧根密度增加)和根特异性黄酮类化合物扩增(黄芩苷1.8倍,总黄酮3.5倍),并伴有12个通路基因的分层诱导。低剂量PEG(2.5%)与SbMYB8协同作用,短暂促进糖元合成,而高剂量应激(5%)破坏这种协调,抑制生物合成机制和代谢物产量。在机制上,酵母单杂交和双荧光素酶实验显示SbMYB8直接结合目标启动子中的顺式元件来协调途径激活。基于以上结果,我们提出了sbmyb8介导的“干旱感知-转录激活-代谢响应”网络,并为抗逆性药用植物的精准育种提供了变革工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信