Boosting Dibenzothiophene Biodesulfurization Through Implantation of a Refactored DBT Pathway in a Tailored Pseudomonas putida Chassis

IF 5.2 2区 生物学
Panayiotis D. Glekas, Ioannis Papageorgopoulos, Stamatios G. Damalas, Víctor de Lorenzo, Diomi Mamma, Esteban Martínez-García, Dimitris G. Hatzinikolaou
{"title":"Boosting Dibenzothiophene Biodesulfurization Through Implantation of a Refactored DBT Pathway in a Tailored Pseudomonas putida Chassis","authors":"Panayiotis D. Glekas,&nbsp;Ioannis Papageorgopoulos,&nbsp;Stamatios G. Damalas,&nbsp;Víctor de Lorenzo,&nbsp;Diomi Mamma,&nbsp;Esteban Martínez-García,&nbsp;Dimitris G. Hatzinikolaou","doi":"10.1111/1751-7915.70148","DOIUrl":null,"url":null,"abstract":"<p>This study reports the efficacy of a rationally designed <i>Pseudomonas putida</i> strain to bring about the specific removal of S atoms from dibenzothiophene (DBT), the model heterocyclic sulfur-containing component of raw petroleum. The emphasis on DBT as a model compound stems from its prevalence in fossil fuels and its resistance to hydrodesulfurization, which positions it as a critical target for improving biodesulfurization technologies. To this end, we explored the combinatorial space of the <i>dsz</i> operon of the naturally occurring strain <i>Rhodococcus qingshengii</i> IGTS8—known to achieve dibenzothiophene degradation—by re-engineering the native regulation of the operon, generating permutations of the order of the cognate genes and their ribosomal-binding sites, testing the effects of multicopy versus monocopy doses and introducing the resulting constructs in the tailor-made host. The combination that emerged as best in terms of catalytic efficacy, moderate physiological burden, and durability was one in which the original <i>dsz</i> operon was refactored by [i] reordering its native gene order to <i>dszBCA</i>, [ii] decompressing their naturally occurring translational coupling with optimised ribosomal-binding sites, [iii] engineering its constitutive expression with a heterologous promoter and [iv] inserting the thereby refactored pathway in the Tn<i>7</i> site of the genome-edited strain <i>P. putida</i> EM384, which is optimised for greater stability and hosting harsh redox reactions. The resulting <i>P. putida</i> DS006 exhibited exceptional DBT desulfurization activity as well as efficiency in model biphasic biodesulfurization systems.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70148","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the efficacy of a rationally designed Pseudomonas putida strain to bring about the specific removal of S atoms from dibenzothiophene (DBT), the model heterocyclic sulfur-containing component of raw petroleum. The emphasis on DBT as a model compound stems from its prevalence in fossil fuels and its resistance to hydrodesulfurization, which positions it as a critical target for improving biodesulfurization technologies. To this end, we explored the combinatorial space of the dsz operon of the naturally occurring strain Rhodococcus qingshengii IGTS8—known to achieve dibenzothiophene degradation—by re-engineering the native regulation of the operon, generating permutations of the order of the cognate genes and their ribosomal-binding sites, testing the effects of multicopy versus monocopy doses and introducing the resulting constructs in the tailor-made host. The combination that emerged as best in terms of catalytic efficacy, moderate physiological burden, and durability was one in which the original dsz operon was refactored by [i] reordering its native gene order to dszBCA, [ii] decompressing their naturally occurring translational coupling with optimised ribosomal-binding sites, [iii] engineering its constitutive expression with a heterologous promoter and [iv] inserting the thereby refactored pathway in the Tn7 site of the genome-edited strain P. putida EM384, which is optimised for greater stability and hosting harsh redox reactions. The resulting P. putida DS006 exhibited exceptional DBT desulfurization activity as well as efficiency in model biphasic biodesulfurization systems.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

在定制恶臭假单胞菌底盘中植入重构DBT途径促进二苯并噻吩生物脱硫。
本研究报道了合理设计的恶臭假单胞菌菌株对二苯并噻吩(DBT)中S原子的特异性去除效果。二苯并噻吩是原油中典型的含硫杂环成分。强调DBT作为一种模式化合物源于它在化石燃料中的普遍存在以及它对加氢脱硫的抗性,这使它成为改进生物脱硫技术的关键目标。为此,我们通过重新设计操纵子的天然调控,产生同源基因及其核糖体结合位点的排列顺序,测试多拷贝和单拷贝剂量的影响,并将由此产生的构建体引入量身定制的宿主,探索了天然存在的菌株清生红球菌igts8的dsz操纵子的组合空间,已知可以实现二苯并噻唑降解。在催化效果、适度的生理负担和持久性方面表现最好的组合是,通过[i]将其天然基因顺序重新排序为dszBCA来重构原始dsz操纵子,[ii]通过优化的核糖体结合位点解压缩它们自然发生的翻译偶联。[iii]用异源启动子修饰其组成表达,[iv]将由此重构的途径插入基因组编辑菌株p.p . putida EM384的Tn7位点,该菌株经过优化,具有更高的稳定性和更强的氧化还原反应。所得恶臭杆菌DS006在模型双相生物脱硫体系中表现出优异的DBT脱硫活性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信