A Smart and Highly Porous Hydrogel for Diabetic Wound Healing

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nouf Al Saleh, Jinrong Wang, Danyang Chen, Eman Ageely, Shuroug Al Bihan, Mohamed M. Abdelghafour, Rukhma Javaid, Ayeesha Mujeeb, Nader S Al-Kenani, Niveen M. Khashab
{"title":"A Smart and Highly Porous Hydrogel for Diabetic Wound Healing","authors":"Nouf Al Saleh,&nbsp;Jinrong Wang,&nbsp;Danyang Chen,&nbsp;Eman Ageely,&nbsp;Shuroug Al Bihan,&nbsp;Mohamed M. Abdelghafour,&nbsp;Rukhma Javaid,&nbsp;Ayeesha Mujeeb,&nbsp;Nader S Al-Kenani,&nbsp;Niveen M. Khashab","doi":"10.1002/admi.202500256","DOIUrl":null,"url":null,"abstract":"<p>Conventional hydrogels often suffer from poor mechanical strength, limited bioactivity, and uncontrolled therapeutic release, restricting their effectiveness in chronic wound healing. Here, a novel multifunctional hydrogel featuring a dual-crosslinked network of Poly(N-isopropylacrylamide) (PNIPAM) and Gum Arabic (GA) designed for advanced diabetic wound healing is presented. This hydrogel integrates thermoresponsive behavior, controlled bioactive release, superior mechanical strength, strong tissue adhesion, and intrinsic antibacterial and anti-inflammatory properties. Unlike traditional systems, the PNIPAM-GA hydrogel leverages complementary hydrogen bonding and hydrophobic interactions to achieve robust structural stability and tunable therapeutic delivery. The thermoresponsive transition enables temperature-triggered release of Gum Arabic, accelerating wound closure while minimizing infection risks. The tailored design of supramolecular interactions in hydrogels to enhance tissue adhesion and release of bioactive molecules represents a major advancement in wound healing technologies and provides a promising approach for next-generation wound care therapies.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 17","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500256","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500256","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional hydrogels often suffer from poor mechanical strength, limited bioactivity, and uncontrolled therapeutic release, restricting their effectiveness in chronic wound healing. Here, a novel multifunctional hydrogel featuring a dual-crosslinked network of Poly(N-isopropylacrylamide) (PNIPAM) and Gum Arabic (GA) designed for advanced diabetic wound healing is presented. This hydrogel integrates thermoresponsive behavior, controlled bioactive release, superior mechanical strength, strong tissue adhesion, and intrinsic antibacterial and anti-inflammatory properties. Unlike traditional systems, the PNIPAM-GA hydrogel leverages complementary hydrogen bonding and hydrophobic interactions to achieve robust structural stability and tunable therapeutic delivery. The thermoresponsive transition enables temperature-triggered release of Gum Arabic, accelerating wound closure while minimizing infection risks. The tailored design of supramolecular interactions in hydrogels to enhance tissue adhesion and release of bioactive molecules represents a major advancement in wound healing technologies and provides a promising approach for next-generation wound care therapies.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

一种用于糖尿病伤口愈合的智能高多孔水凝胶
传统的水凝胶往往存在机械强度差、生物活性有限、治疗释放不可控等问题,限制了其在慢性伤口愈合中的效果。本文介绍了一种新型多功能水凝胶,该水凝胶具有聚(n -异丙基丙烯酰胺)(PNIPAM)和阿拉伯胶(GA)的双交联网络,设计用于晚期糖尿病伤口愈合。这种水凝胶集成了热响应行为,控制生物活性释放,优越的机械强度,强组织粘附,以及固有的抗菌和抗炎特性。与传统系统不同,PNIPAM-GA水凝胶利用互补的氢键和疏水相互作用来实现强大的结构稳定性和可调的治疗递送。热响应转变使阿拉伯胶的温度触发释放,加速伤口愈合,同时最大限度地降低感染风险。量身定制的水凝胶中超分子相互作用,以增强组织粘附和生物活性分子的释放,代表了伤口愈合技术的重大进步,并为下一代伤口护理治疗提供了有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信