{"title":"Ceramics Surface Design by Laser Texturing: A Review on Structures and Functionalities","authors":"Edna Silva, Augusto Lopes, Georgina Miranda","doi":"10.1002/admi.202500302","DOIUrl":null,"url":null,"abstract":"<p>Laser surface texturing (LST) employs high-energy laser radiation to promote controlled material ablation, enabling the creation of surface features that can significantly enhance material performance. Applications range from friction reduction to improved biological interactions, demonstrating the versatility of LST. While the technique is well established for metals and alloys, its application to ceramics still faces considerable challenges that hinder broader adoption. This review aims to provide a comprehensive overview of LST applied to ceramics, focusing on laser-ceramic interactions and the key processing parameters that influence surface structuring. Representative examples of functional ceramic surfaces produced via LST are discussed, along with their performance in various domains, including optical, thermal, electronic, electrochemical, biomedical, and tribological applications. This review showcases the huge potential of LST for innovation in ceramics, envisioning future perspectives on the role of LST in ceramic surface engineering.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 17","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500302","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500302","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser surface texturing (LST) employs high-energy laser radiation to promote controlled material ablation, enabling the creation of surface features that can significantly enhance material performance. Applications range from friction reduction to improved biological interactions, demonstrating the versatility of LST. While the technique is well established for metals and alloys, its application to ceramics still faces considerable challenges that hinder broader adoption. This review aims to provide a comprehensive overview of LST applied to ceramics, focusing on laser-ceramic interactions and the key processing parameters that influence surface structuring. Representative examples of functional ceramic surfaces produced via LST are discussed, along with their performance in various domains, including optical, thermal, electronic, electrochemical, biomedical, and tribological applications. This review showcases the huge potential of LST for innovation in ceramics, envisioning future perspectives on the role of LST in ceramic surface engineering.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.