Local Femtosecond Pulsed Laser Decoating of Superhydrophobic Paper Coating for Enhanced Fog Harvesting Efficiency

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Martin Kahlmeyer, Carina Breuer, Andreas Winkel, Markus Biesalski, Camilo Florian-Baron, Stefan Böhm
{"title":"Local Femtosecond Pulsed Laser Decoating of Superhydrophobic Paper Coating for Enhanced Fog Harvesting Efficiency","authors":"Martin Kahlmeyer,&nbsp;Carina Breuer,&nbsp;Andreas Winkel,&nbsp;Markus Biesalski,&nbsp;Camilo Florian-Baron,&nbsp;Stefan Böhm","doi":"10.1002/admi.202500332","DOIUrl":null,"url":null,"abstract":"<p>Superhydrophobic paper has demonstrated significant potential for efficient water harvesting. Previous studies have indicated that the incorporation of pinning structures on superhydrophobic surfaces can enhance water collection efficiency. This study explores the feasibility of creating such pinning structures through femtosecond laser ablation of wax-based superhydrophobic coatings. Static contact angle measurements and the roll-off behavior of droplets on laser-treated surfaces are conducted to evaluate the effects of laser ablation. Additionally, fogging tests are performed to assess the water collection performance, revealing an improvement of above 10% in comparison to unmodified superhydrophobic paper without localized pinning structures. Notably, the laser ablation process minimally affects the load-bearing capacity of the paper, ensuring that its structural integrity is preserved. The ability to design laterally resolved pinning structures opens new possibilities for further optimization, such as the creation of flow paths, ultimately enhancing the overall efficiency of water harvesting systems.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 17","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500332","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500332","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Superhydrophobic paper has demonstrated significant potential for efficient water harvesting. Previous studies have indicated that the incorporation of pinning structures on superhydrophobic surfaces can enhance water collection efficiency. This study explores the feasibility of creating such pinning structures through femtosecond laser ablation of wax-based superhydrophobic coatings. Static contact angle measurements and the roll-off behavior of droplets on laser-treated surfaces are conducted to evaluate the effects of laser ablation. Additionally, fogging tests are performed to assess the water collection performance, revealing an improvement of above 10% in comparison to unmodified superhydrophobic paper without localized pinning structures. Notably, the laser ablation process minimally affects the load-bearing capacity of the paper, ensuring that its structural integrity is preserved. The ability to design laterally resolved pinning structures opens new possibilities for further optimization, such as the creation of flow paths, ultimately enhancing the overall efficiency of water harvesting systems.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

超疏水纸涂层局部飞秒脉冲激光消光提高雾收集效率
超疏水纸在高效集水方面已显示出巨大的潜力。先前的研究表明,在超疏水表面加入钉住结构可以提高水的收集效率。本研究探索了通过飞秒激光烧蚀蜡基超疏水涂层来制造这种钉接结构的可行性。通过静态接触角测量和液滴在激光处理表面的滚转行为来评价激光烧蚀的效果。此外,还进行了雾化测试,以评估集水性能,结果显示,与未经改性的、没有局部钉住结构的超疏水纸相比,其集水性能提高了10%以上。值得注意的是,激光烧蚀过程对纸张承载能力的影响最小,确保了其结构完整性。横向解决固定结构的设计能力为进一步优化提供了新的可能性,例如创建流动路径,最终提高集水系统的整体效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信