Thirsa Brethouwer, Alex de Mendoza, Ozren Bogdanovic
{"title":"Non-CG DNA methylation in animal genomes","authors":"Thirsa Brethouwer, Alex de Mendoza, Ozren Bogdanovic","doi":"10.1038/s41588-025-02303-1","DOIUrl":null,"url":null,"abstract":"<p>Cytosine DNA methylation is widespread in animal genomes and occurs predominantly at CG dinucleotides (mCG). While the roles of mCG, such as in genomic imprinting and genome stability, are well established, non-CG DNA methylation (mCH) remains poorly understood. In most vertebrate tissues, roughly 80% of CGs are methylated, whereas mCH levels are generally low, typically ranging from 1% to 3%. In vertebrates, mCH is most prevalent in neural tissue, oocytes and embryonic stem cells and has been linked to neurodevelopmental disorders. Moreover, mCH appears to have a conserved role in regulating vertebrate neural genomes, and recent studies suggest that it has functions in the embryogenesis of teleost fish. Overall, mCH represents an intriguing emerging aspect of gene regulation with potential implications for cellular identity, repeat silencing and neural function. In this Review, we provide a critical overview of the patterning, mechanisms and functional implications of mCH in animals.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"35 1","pages":""},"PeriodicalIF":29.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02303-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytosine DNA methylation is widespread in animal genomes and occurs predominantly at CG dinucleotides (mCG). While the roles of mCG, such as in genomic imprinting and genome stability, are well established, non-CG DNA methylation (mCH) remains poorly understood. In most vertebrate tissues, roughly 80% of CGs are methylated, whereas mCH levels are generally low, typically ranging from 1% to 3%. In vertebrates, mCH is most prevalent in neural tissue, oocytes and embryonic stem cells and has been linked to neurodevelopmental disorders. Moreover, mCH appears to have a conserved role in regulating vertebrate neural genomes, and recent studies suggest that it has functions in the embryogenesis of teleost fish. Overall, mCH represents an intriguing emerging aspect of gene regulation with potential implications for cellular identity, repeat silencing and neural function. In this Review, we provide a critical overview of the patterning, mechanisms and functional implications of mCH in animals.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution