Periodic equatorial orbits in a black bounce scenario

IF 3.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Anderson Bragado and Gonzalo J Olmo
{"title":"Periodic equatorial orbits in a black bounce scenario","authors":"Anderson Bragado and Gonzalo J Olmo","doi":"10.1088/1361-6382/adffde","DOIUrl":null,"url":null,"abstract":"We study equatorial closed orbits in a popular black bounce model to see if the internal structure of these objects could lead to peculiar observable features. Paralleling the analysis of the Schwarzschild and Kerr metrics, we show that in the black bounce case each orbit can also be associated with a triplet of integers which can then be used to construct a rational number characterizing each periodic orbit. When the black bounce solution represents a traversable wormhole, we show that the previous classification scheme is still applicable with minor adaptations. We confirm in this way that this established framework enables a complete description of the equatorial dynamics across a spectrum of cases, from regular black holes to wormholes. Varying the black bounce parameter , we compare the trajectories in the Simpson–Visser model with those in the Schwarzschild metric (and the rotating case with Kerr). We find that in some cases even small increments in can lead to significant changes in the orbits.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"24 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adffde","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study equatorial closed orbits in a popular black bounce model to see if the internal structure of these objects could lead to peculiar observable features. Paralleling the analysis of the Schwarzschild and Kerr metrics, we show that in the black bounce case each orbit can also be associated with a triplet of integers which can then be used to construct a rational number characterizing each periodic orbit. When the black bounce solution represents a traversable wormhole, we show that the previous classification scheme is still applicable with minor adaptations. We confirm in this way that this established framework enables a complete description of the equatorial dynamics across a spectrum of cases, from regular black holes to wormholes. Varying the black bounce parameter , we compare the trajectories in the Simpson–Visser model with those in the Schwarzschild metric (and the rotating case with Kerr). We find that in some cases even small increments in can lead to significant changes in the orbits.
黑色弹跳情景下的周期性赤道轨道
我们在一个流行的黑弹跳模型中研究赤道闭合轨道,看看这些物体的内部结构是否会导致特殊的可观测特征。通过对史瓦西度量和克尔度量的并行分析,我们证明了在黑弹跳的情况下,每个轨道也可以与一个整数三重组相关联,然后用它来构造表征每个周期轨道的有序数。当黑色反弹解表示一个可穿越的虫洞时,我们证明了前面的分类方案仍然适用,只是做了一些小小的调整。我们以这种方式确认,这个已建立的框架能够完整地描述从常规黑洞到虫洞的各种情况下的赤道动力学。通过改变黑弹跳参数,我们比较了Simpson-Visser模型和Schwarzschild度规(以及Kerr的旋转情况)中的轨迹。我们发现,在某些情况下,即使是很小的增量也会导致轨道的显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信