Tandem amine scrubbing and CO2 electrolysis via direct piperazine carbamate reduction

IF 60.1 1区 材料科学 Q1 ENERGY & FUELS
Peng Li, Yu Mao, Heejong Shin, Qi Yang, Xuan Cheng, Yitong Li, Kangkang Li, Hai Yu, Roger Mulder, Wei Kong Pang, Huanyu Jin, Yong Zhao, Zhi Zheng, Emily Finch, Kyle Hearn, Baohua Jia, Geoffrey I. N. Waterhouse, Ziyun Wang, Tianyi Ma
{"title":"Tandem amine scrubbing and CO2 electrolysis via direct piperazine carbamate reduction","authors":"Peng Li, Yu Mao, Heejong Shin, Qi Yang, Xuan Cheng, Yitong Li, Kangkang Li, Hai Yu, Roger Mulder, Wei Kong Pang, Huanyu Jin, Yong Zhao, Zhi Zheng, Emily Finch, Kyle Hearn, Baohua Jia, Geoffrey I. N. Waterhouse, Ziyun Wang, Tianyi Ma","doi":"10.1038/s41560-025-01869-8","DOIUrl":null,"url":null,"abstract":"<p>Transforming CO<sub>2</sub> into valuable products presents a promising route for reducing emissions across various industry sectors. However, conventional methods, including sequential CO<sub>2</sub> electrolysis or reverse water–gas shift reaction, depend on energy-intensive CO<sub>2</sub> purification; while emerging reactive CO<sub>2</sub> capture strategies still face challenges in designing optimal system components that enable efficient electrochemical regeneration without compromising catalytic performance. Here we systematically screen a broad library of amine-based absorbents to establish a design rationale for tandem amine scrubbing and CO<sub>2</sub> electrolysis. We identify piperazine as an optimal capture medium and show that its carbamate form can be directly reduced using a nickel single-atom catalyst. This charge-neutral intermediate facilitates spontaneous adsorption, rapid transport and efficient C–N bond cleavage, enabling stable carbon monoxide production alongside in situ amine regeneration. The process achieves an energy efficiency of ~48.8 GJ per tonne CO, offering a scalable and energy efficient pathway towards carbon-neutral chemical feedstocks.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"8 1","pages":""},"PeriodicalIF":60.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01869-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Transforming CO2 into valuable products presents a promising route for reducing emissions across various industry sectors. However, conventional methods, including sequential CO2 electrolysis or reverse water–gas shift reaction, depend on energy-intensive CO2 purification; while emerging reactive CO2 capture strategies still face challenges in designing optimal system components that enable efficient electrochemical regeneration without compromising catalytic performance. Here we systematically screen a broad library of amine-based absorbents to establish a design rationale for tandem amine scrubbing and CO2 electrolysis. We identify piperazine as an optimal capture medium and show that its carbamate form can be directly reduced using a nickel single-atom catalyst. This charge-neutral intermediate facilitates spontaneous adsorption, rapid transport and efficient C–N bond cleavage, enabling stable carbon monoxide production alongside in situ amine regeneration. The process achieves an energy efficiency of ~48.8 GJ per tonne CO, offering a scalable and energy efficient pathway towards carbon-neutral chemical feedstocks.

Abstract Image

直接氨基甲酸哌嗪还原串联胺洗涤和CO2电解
将二氧化碳转化为有价值的产品是减少各行业排放的一条有希望的途径。然而,传统的方法,包括顺序二氧化碳电解或逆向水气转换反应,依赖于能源密集型的二氧化碳净化;而新兴的活性二氧化碳捕获策略仍然面临着设计最佳系统组件的挑战,这些组件既能实现高效的电化学再生,又不影响催化性能。在这里,我们系统地筛选了广泛的胺基吸收剂库,以建立串联胺洗涤和二氧化碳电解的设计原理。我们确定哌嗪是一种最佳的捕获介质,并表明它的氨基甲酸酯形式可以使用镍单原子催化剂直接还原。这种电荷中性的中间体促进自发吸附,快速运输和有效的C-N键裂解,使一氧化碳的稳定生产和原位胺再生成为可能。该工艺实现了每吨二氧化碳约48.8 GJ的能源效率,为实现碳中性化学原料提供了一条可扩展且节能的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信