Qingyuan Jiang,Shuqi Jin,Zhichao Qin,Junqi Zhang,Ruyi He,Zhuo Chen,Bin Qiao,Jie Qiao,Yi Liu
{"title":"CRISPR/Cas12a DTR system: a topology-guided Cas12a assay for specific dual detection of RNA and DNA targets.","authors":"Qingyuan Jiang,Shuqi Jin,Zhichao Qin,Junqi Zhang,Ruyi He,Zhuo Chen,Bin Qiao,Jie Qiao,Yi Liu","doi":"10.1093/nar/gkaf893","DOIUrl":null,"url":null,"abstract":"The CRISPR/Cas12a technology has revolutionized molecular diagnostics. However, existing Cas12a systems depend on continuous target DNA activation, which limits them to single-target detection. In this study, we developed a novel topology-guided Cas12a system, the double-target responsive (DTR) system, capable of being activated by noncontiguous dual RNA/DNA targets. The DTR system employs two split CRISPR RNA (crRNA) fragments and two Cas12a proteins that cooperatively reconstitute upon recognizing two nucleic acid activators. We demonstrated the DTR system's ability to specifically detect dual nucleic acid substrates in a single readout, achieving a detection limit of 78 fM for RNA and exceptional specificity for single-nucleotide variations. Additionally, we successfully applied the DTR system to clinical samples, enabling simultaneous detection of two oral squamous cell carcinoma-related microRNAs (miR-155 and miR-let-7a), thereby distinguishing healthy individuals from patients. This work establishes an efficient Cas12a-based platform for sensitive, simultaneous, and discriminative detection of RNA and DNA targets, enhancing the versatility of Cas12a in analytical detection and clinical diagnosis.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"38 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf893","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The CRISPR/Cas12a technology has revolutionized molecular diagnostics. However, existing Cas12a systems depend on continuous target DNA activation, which limits them to single-target detection. In this study, we developed a novel topology-guided Cas12a system, the double-target responsive (DTR) system, capable of being activated by noncontiguous dual RNA/DNA targets. The DTR system employs two split CRISPR RNA (crRNA) fragments and two Cas12a proteins that cooperatively reconstitute upon recognizing two nucleic acid activators. We demonstrated the DTR system's ability to specifically detect dual nucleic acid substrates in a single readout, achieving a detection limit of 78 fM for RNA and exceptional specificity for single-nucleotide variations. Additionally, we successfully applied the DTR system to clinical samples, enabling simultaneous detection of two oral squamous cell carcinoma-related microRNAs (miR-155 and miR-let-7a), thereby distinguishing healthy individuals from patients. This work establishes an efficient Cas12a-based platform for sensitive, simultaneous, and discriminative detection of RNA and DNA targets, enhancing the versatility of Cas12a in analytical detection and clinical diagnosis.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.