Saranne J Mitchell,Carlos Pardo-Pastor,Anastassia Tchoumakova,Thomas A Zangle,Jody Rosenblatt
{"title":"Energy deficiency selects crowded live epithelial cells for extrusion.","authors":"Saranne J Mitchell,Carlos Pardo-Pastor,Anastassia Tchoumakova,Thomas A Zangle,Jody Rosenblatt","doi":"10.1038/s41586-025-09514-w","DOIUrl":null,"url":null,"abstract":"Epithelial cells work collectively to provide a protective barrier, yet they turn over rapidly through cell division and death. If the numbers of dividing and dying cells do not match, the barrier can vanish, or tumours can form. Mechanical forces through the stretch-activated ion channel Piezo1 link both of the processes; stretch promotes cell division, whereas crowding triggers live cells to extrude and then die1,2. However, it was not clear what selects a given crowded cell for extrusion. Here we show that the crowded cells with the least energy and membrane potential are selected for extrusion. Crowding triggers sodium (Na+) entry through the epithelial Na+ channel (ENaC), which depolarizes cells. While those with sufficient energy repolarize, those with limited ATP remain depolarized, which, in turn, triggers water egress through the voltage-gated potassium (K+) channels Kv1.1 and Kv1.2 and the chloride (Cl-) channel SWELL1. Transient water loss causes cell shrinkage, amplifying crowding to activate crowding-induced live cell extrusion. Thus, our findings suggest that ENaC acts as a tension sensor that probes for cells with the least energy to extrude and die, possibly damping inadvertent crowding activation of Piezo1 in background cells. We reveal crowding-sensing mechanisms upstream of Piezo1 that highlight water regulation and ion channels as key regulators of epithelial cell turnover.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"42 1","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09514-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Epithelial cells work collectively to provide a protective barrier, yet they turn over rapidly through cell division and death. If the numbers of dividing and dying cells do not match, the barrier can vanish, or tumours can form. Mechanical forces through the stretch-activated ion channel Piezo1 link both of the processes; stretch promotes cell division, whereas crowding triggers live cells to extrude and then die1,2. However, it was not clear what selects a given crowded cell for extrusion. Here we show that the crowded cells with the least energy and membrane potential are selected for extrusion. Crowding triggers sodium (Na+) entry through the epithelial Na+ channel (ENaC), which depolarizes cells. While those with sufficient energy repolarize, those with limited ATP remain depolarized, which, in turn, triggers water egress through the voltage-gated potassium (K+) channels Kv1.1 and Kv1.2 and the chloride (Cl-) channel SWELL1. Transient water loss causes cell shrinkage, amplifying crowding to activate crowding-induced live cell extrusion. Thus, our findings suggest that ENaC acts as a tension sensor that probes for cells with the least energy to extrude and die, possibly damping inadvertent crowding activation of Piezo1 in background cells. We reveal crowding-sensing mechanisms upstream of Piezo1 that highlight water regulation and ion channels as key regulators of epithelial cell turnover.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.