{"title":"Causally Sound Priors for Binary Experiments.","authors":"Nicholas J Irons, Carlos Cinelli","doi":"10.1214/25-BA1506","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce the BREASE framework for the Bayesian analysis of randomized controlled trials with binary treatment and outcome. Approaching the problem from a causal inference perspective, we propose parameterizing the likelihood in terms of the <b>b</b>aseline <b>r</b>isk, <b>e</b>fficacy, and <b>a</b>dverse <b>s</b>ide <b>e</b>ffects of the treatment, along with a flexible, yet intuitive and tractable jointly independent beta prior distribution on these parameters, which we show to be a generalization of the Dirichlet prior for the joint distribution of potential outcomes. Our approach has a number of desirable characteristics when compared to current mainstream alternatives: (i) it naturally induces prior dependence between expected outcomes in the treatment and control groups; (ii) as the baseline risk, efficacy and risk of adverse side effects are quantities commonly present in the clinicians' vocabulary, the hyperparameters of the prior are directly interpretable, thus facilitating the elicitation of prior knowledge and sensitivity analysis; and (iii) we provide analytical formulae for the marginal likelihood, Bayes factor, and other posterior quantities, as well as an exact posterior sampling algorithm and an accurate and fast data-augmented Gibbs sampler in cases where traditional MCMC fails. Empirical examples demonstrate the utility of our methods for estimation, hypothesis testing, and sensitivity analysis of treatment effects.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/25-BA1506","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the BREASE framework for the Bayesian analysis of randomized controlled trials with binary treatment and outcome. Approaching the problem from a causal inference perspective, we propose parameterizing the likelihood in terms of the baseline risk, efficacy, and adverse side effects of the treatment, along with a flexible, yet intuitive and tractable jointly independent beta prior distribution on these parameters, which we show to be a generalization of the Dirichlet prior for the joint distribution of potential outcomes. Our approach has a number of desirable characteristics when compared to current mainstream alternatives: (i) it naturally induces prior dependence between expected outcomes in the treatment and control groups; (ii) as the baseline risk, efficacy and risk of adverse side effects are quantities commonly present in the clinicians' vocabulary, the hyperparameters of the prior are directly interpretable, thus facilitating the elicitation of prior knowledge and sensitivity analysis; and (iii) we provide analytical formulae for the marginal likelihood, Bayes factor, and other posterior quantities, as well as an exact posterior sampling algorithm and an accurate and fast data-augmented Gibbs sampler in cases where traditional MCMC fails. Empirical examples demonstrate the utility of our methods for estimation, hypothesis testing, and sensitivity analysis of treatment effects.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.