Maximum likelihood estimation of log-affine models using detailed-balanced reaction networks.

IF 2.3 4区 数学 Q2 BIOLOGY
Oskar Henriksson, Carlos Améndola, Jose Israel Rodriguez, Polly Y Yu
{"title":"Maximum likelihood estimation of log-affine models using detailed-balanced reaction networks.","authors":"Oskar Henriksson, Carlos Améndola, Jose Israel Rodriguez, Polly Y Yu","doi":"10.1007/s00285-025-02262-5","DOIUrl":null,"url":null,"abstract":"<p><p>A fundamental question in the field of molecular computation is what computational tasks a biochemical system can carry out. In this work, we focus on the problem of finding the maximum likelihood estimate (MLE) for log-affine models. We revisit a construction due to Gopalkrishnan of a mass-action system with the MLE as its unique positive steady state, which is based on choosing a basis for the kernel of the design matrix of the model. We extend this construction to allow for any finite spanning set of the kernel, and explore how the choice of spanning set influences the dynamics of the resulting network, including the existence of boundary steady states, the deficiency of the network, and the rate of convergence. In particular, we prove that using a Markov basis as the spanning set guarantees global stability of the MLE steady state.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 4","pages":"34"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02262-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental question in the field of molecular computation is what computational tasks a biochemical system can carry out. In this work, we focus on the problem of finding the maximum likelihood estimate (MLE) for log-affine models. We revisit a construction due to Gopalkrishnan of a mass-action system with the MLE as its unique positive steady state, which is based on choosing a basis for the kernel of the design matrix of the model. We extend this construction to allow for any finite spanning set of the kernel, and explore how the choice of spanning set influences the dynamics of the resulting network, including the existence of boundary steady states, the deficiency of the network, and the rate of convergence. In particular, we prove that using a Markov basis as the spanning set guarantees global stability of the MLE steady state.

Abstract Image

Abstract Image

Abstract Image

使用详细平衡反应网络的对数仿射模型的最大似然估计。
分子计算领域的一个基本问题是生化系统可以执行哪些计算任务。在这项工作中,我们专注于寻找对数仿射模型的最大似然估计(MLE)问题。我们重新考虑了基于Gopalkrishnan的质量作用系统的构造,该系统以MLE作为其唯一的正稳态,其基础是为模型的设计矩阵的核选择一个基。我们将这种构造扩展到允许核的任何有限生成集,并探索生成集的选择如何影响所得到的网络的动力学,包括边界稳态的存在,网络的缺陷和收敛速度。特别地,我们证明了使用马尔可夫基作为生成集可以保证MLE稳态的全局稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信