TissueMosaic: Self-supervised learning of tissue representations enables differential spatial transcriptomics across samples.

IF 7.7
Cell systems Pub Date : 2025-09-17 Epub Date: 2025-09-08 DOI:10.1016/j.cels.2025.101394
Sandeep Kambhampati, Luca D'Alessio, Fedor Grab, Stephen Fleming, Sophia Liu, Ruth Raichur, Fei Chen, Mehrtash Babadi
{"title":"TissueMosaic: Self-supervised learning of tissue representations enables differential spatial transcriptomics across samples.","authors":"Sandeep Kambhampati, Luca D'Alessio, Fedor Grab, Stephen Fleming, Sophia Liu, Ruth Raichur, Fei Chen, Mehrtash Babadi","doi":"10.1016/j.cels.2025.101394","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial transcriptomics allows for the measurement of gene expression within the native tissue context. However, despite technological advancements, computational methods to link cell states with their microenvironment and compare these relationships across samples and conditions remain limited. To address this, we introduce Tissue Motif-Based Spatial Inference across Conditions (TissueMosaic), a self-supervised convolutional neural network designed to discover and represent tissue architectural motifs from multi-sample spatial transcriptomic datasets. TissueMosaic further links these motifs to gene expression, enabling the study of how changes in tissue structure impact cell-intrinsic function. TissueMosaic increases the signal-to-noise ratio of spatial differential expression analysis through a motif enrichment strategy, resulting in more reliable detection of genes that covary with tissue structure changes. Here, we demonstrate that TissueMosaic learns representations that outperform neighborhood cell-type composition baselines and existing methods on downstream tasks. These findings underscore the potential of self-supervised learning to advance spatial transcriptomics discovery.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101394"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial transcriptomics allows for the measurement of gene expression within the native tissue context. However, despite technological advancements, computational methods to link cell states with their microenvironment and compare these relationships across samples and conditions remain limited. To address this, we introduce Tissue Motif-Based Spatial Inference across Conditions (TissueMosaic), a self-supervised convolutional neural network designed to discover and represent tissue architectural motifs from multi-sample spatial transcriptomic datasets. TissueMosaic further links these motifs to gene expression, enabling the study of how changes in tissue structure impact cell-intrinsic function. TissueMosaic increases the signal-to-noise ratio of spatial differential expression analysis through a motif enrichment strategy, resulting in more reliable detection of genes that covary with tissue structure changes. Here, we demonstrate that TissueMosaic learns representations that outperform neighborhood cell-type composition baselines and existing methods on downstream tasks. These findings underscore the potential of self-supervised learning to advance spatial transcriptomics discovery.

组织嵌合:组织表征的自我监督学习使跨样本的差异空间转录组学成为可能。
空间转录组学允许在原生组织环境中测量基因表达。然而,尽管技术进步,将细胞状态与其微环境联系起来并在样本和条件下比较这些关系的计算方法仍然有限。为了解决这个问题,我们引入了基于组织基序的跨条件空间推理(TissueMosaic),这是一个自监督卷积神经网络,旨在从多样本空间转录组数据集中发现和表示组织结构基序。TissueMosaic进一步将这些基序与基因表达联系起来,使研究组织结构的变化如何影响细胞的内在功能成为可能。TissueMosaic通过基序富集策略提高了空间差异表达分析的信噪比,从而更可靠地检测到与组织结构变化共变的基因。在这里,我们证明了TissueMosaic学习表征在下游任务上优于邻域细胞类型组成基线和现有方法。这些发现强调了自我监督学习在推进空间转录组学发现方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信