Jonathan Josephs-Spaulding, Hannah Clara Rettig, Johannes Zimmermann, Mariam Chkonia, Alexander Mischnik, Sören Franzenburg, Simon Graspeuntner, Jan Rupp, Christoph Kaleta
{"title":"Metatranscriptomics-based metabolic modeling of patient-specific urinary microbiome during infection.","authors":"Jonathan Josephs-Spaulding, Hannah Clara Rettig, Johannes Zimmermann, Mariam Chkonia, Alexander Mischnik, Sören Franzenburg, Simon Graspeuntner, Jan Rupp, Christoph Kaleta","doi":"10.1038/s41522-025-00823-6","DOIUrl":null,"url":null,"abstract":"<p><p>Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI. We analyzed urine samples from 19 female patients with confirmed uropathogenic E. coli (UPEC) infections, reconstructing personalized community models constrained by gene expression and simulated in a virtual urine environment. This systems biology approach revealed marked inter-patient variability in microbial composition, transcriptional activity, and metabolic behavior. We identified distinct virulence strategies, metabolic cross-feeding, and a modulatory role for Lactobacillus species. Comparisons between transcript-constrained and unconstrained models showed that integrating gene expression narrows flux variability and enhances biological relevance. These findings highlight the metabolic heterogeneity of UTI-associated microbiota and point to microbiome-informed diagnostic and therapeutic strategies for managing MDR infections.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"183"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12420794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00823-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI. We analyzed urine samples from 19 female patients with confirmed uropathogenic E. coli (UPEC) infections, reconstructing personalized community models constrained by gene expression and simulated in a virtual urine environment. This systems biology approach revealed marked inter-patient variability in microbial composition, transcriptional activity, and metabolic behavior. We identified distinct virulence strategies, metabolic cross-feeding, and a modulatory role for Lactobacillus species. Comparisons between transcript-constrained and unconstrained models showed that integrating gene expression narrows flux variability and enhances biological relevance. These findings highlight the metabolic heterogeneity of UTI-associated microbiota and point to microbiome-informed diagnostic and therapeutic strategies for managing MDR infections.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.