{"title":"Pharmacological insights into gut microbiota modulation in systemic lupus erythematosus: Mechanisms, treatment strategies, and clinical implications.","authors":"Kantrol Kumar Sahu, Krishna Yadav, Madhulika Pradhan, Mukesh Sharma, Akhilesh Dubey, Sucheta, J John Kirubakaran","doi":"10.1016/j.jpet.2025.103659","DOIUrl":null,"url":null,"abstract":"<p><p>Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by widespread inflammation and immune system dysregulation. Recent research suggests that the gut microbiota may play a role in the development of SLE by modulating immune system responses, affecting cytokine production, and altering the activity of T and B cells lymphocytes. As a result, there is a growing interest in microbiota-targeted therapies, including probiotics, dietary changes, and fecal microbiota transplantation. These methods may help restore the balance of microbes and reduce disease activity, but there are still a number of problems to solve. For example, microbiota composition varies greatly from person to person, and it is not clear how dysbiosis causes disease onset. There are also safety concerns about fecal microbiota transplantation. Experimental and clinical studies have started to shed light on the complicated ways in which microbial communities and immune function affect each other in SLE. These studies provide useful information, but their results are often inconsistent. As research continues, integrative methods like metagenomics and metabolomics may help find microbial signatures linked to disease, helping create more accurate and personalized treatments. The gut microbiome is a promising yet still developing area of research that could help us learn more about autoimmune diseases and their treatment, such as SLE. SIGNIFICANCE STATEMENT: Grasping the complex interplay between gut microbiota and systemic lupus erythematosus (SLE) has provided an avenue for therapeutic intervention. This study emphasizes the importance of gut dysbiosis in immune dysregulation, with connections between microbial translocation, molecular mimicry, and inflammatory pathways as contributing factors to the progression of SLE. This work sets the stage for novel and targeted approaches to treating SLE and improving patient outcomes by investigating microbiota-centric treatment options, such as probiotics, dietary interventions, and fecal microbiota transplantation.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 9","pages":"103659"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpet.2025.103659","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by widespread inflammation and immune system dysregulation. Recent research suggests that the gut microbiota may play a role in the development of SLE by modulating immune system responses, affecting cytokine production, and altering the activity of T and B cells lymphocytes. As a result, there is a growing interest in microbiota-targeted therapies, including probiotics, dietary changes, and fecal microbiota transplantation. These methods may help restore the balance of microbes and reduce disease activity, but there are still a number of problems to solve. For example, microbiota composition varies greatly from person to person, and it is not clear how dysbiosis causes disease onset. There are also safety concerns about fecal microbiota transplantation. Experimental and clinical studies have started to shed light on the complicated ways in which microbial communities and immune function affect each other in SLE. These studies provide useful information, but their results are often inconsistent. As research continues, integrative methods like metagenomics and metabolomics may help find microbial signatures linked to disease, helping create more accurate and personalized treatments. The gut microbiome is a promising yet still developing area of research that could help us learn more about autoimmune diseases and their treatment, such as SLE. SIGNIFICANCE STATEMENT: Grasping the complex interplay between gut microbiota and systemic lupus erythematosus (SLE) has provided an avenue for therapeutic intervention. This study emphasizes the importance of gut dysbiosis in immune dysregulation, with connections between microbial translocation, molecular mimicry, and inflammatory pathways as contributing factors to the progression of SLE. This work sets the stage for novel and targeted approaches to treating SLE and improving patient outcomes by investigating microbiota-centric treatment options, such as probiotics, dietary interventions, and fecal microbiota transplantation.
期刊介绍:
A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.