Single camera estimation of microswimmer depth with a convolutional network.

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-09-01 Epub Date: 2025-09-10 DOI:10.1098/rsif.2025.0428
Ali Hosseini, Célia Fosse, Maya Awada, Marcel Stimberg, Romain Brette
{"title":"Single camera estimation of microswimmer depth with a convolutional network.","authors":"Ali Hosseini, Célia Fosse, Maya Awada, Marcel Stimberg, Romain Brette","doi":"10.1098/rsif.2025.0428","DOIUrl":null,"url":null,"abstract":"<p><p>A number of techniques have been developed to measure the three-dimensional trajectories of protists, which require special experimental set-ups, such as a pair of orthogonal cameras. On the other hand, machine learning techniques have been used to estimate the vertical position of spherical particles from the defocus pattern, but they require the acquisition of a labelled dataset with finely spaced vertical positions. Here, we describe a simple way to make a dataset of <i>Paramecium</i> images labelled with vertical position from a single 5 min movie, based on a tilted slide set-up. We used this dataset to train a simple convolutional network to estimate the vertical position of <i>Paramecium</i> from conventional bright field images. As an application, we show that this technique has sufficient accuracy to study the surface following behaviour of <i>Paramecium</i> (thigmotaxis).</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 230","pages":"20250428"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0428","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A number of techniques have been developed to measure the three-dimensional trajectories of protists, which require special experimental set-ups, such as a pair of orthogonal cameras. On the other hand, machine learning techniques have been used to estimate the vertical position of spherical particles from the defocus pattern, but they require the acquisition of a labelled dataset with finely spaced vertical positions. Here, we describe a simple way to make a dataset of Paramecium images labelled with vertical position from a single 5 min movie, based on a tilted slide set-up. We used this dataset to train a simple convolutional network to estimate the vertical position of Paramecium from conventional bright field images. As an application, we show that this technique has sufficient accuracy to study the surface following behaviour of Paramecium (thigmotaxis).

基于卷积网络的单摄像机微游泳者深度估计。
人们已经开发了许多技术来测量原生生物的三维轨迹,这需要特殊的实验装置,比如一对正交摄像机。另一方面,机器学习技术已被用于从离焦模式中估计球形粒子的垂直位置,但它们需要获取具有精细间隔垂直位置的标记数据集。在这里,我们描述了一种简单的方法,基于倾斜的幻灯片设置,从单个5分钟的电影中制作带有垂直位置标记的草履虫图像数据集。我们使用这个数据集训练一个简单的卷积网络,从传统的亮场图像中估计草履虫的垂直位置。作为一种应用,我们表明该技术具有足够的准确性来研究草履虫(thigmotaxis)的表面跟随行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信