{"title":"The implications of host-pathogen co-evolutionary outcomes on macro-epidemics based on a combined-host strategy.","authors":"Qiutong Liu, Yanni Xiao, Stacey R Smith","doi":"10.1007/s11538-025-01517-y","DOIUrl":null,"url":null,"abstract":"<p><p>Host defense and pathogen virulence interact and mutually shape each other's evolution. Host-pathogen co-evolutionary outcomes have potentially significant impacts on population dynamics and vice versa. To investigate host-pathogen interactions and explore the impact of micro-level co-evolutionary outcomes on macro-level epidemics, we develop a co-evolutionary model with a combined host-defense strategy. Our results illustrate that host-pathogen co-evolution may induce infection cycling and lead to the vanishing of the disease-induced hydra effect, whereas pathogen mono-evolution strengthens the hydra effect in both range and magnitude. As the recovery rate increases, we find a counter-intuitive effect of increased disease prevalence due to host-pathogen co-evolution: the disease is first highly infectious and lethal, then highly infectious but with low lethality. Such diverse outcomes suggest that this combined co-evolutionary and epidemiological framework holds great promise for a better understanding of infection.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 10","pages":"148"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01517-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Host defense and pathogen virulence interact and mutually shape each other's evolution. Host-pathogen co-evolutionary outcomes have potentially significant impacts on population dynamics and vice versa. To investigate host-pathogen interactions and explore the impact of micro-level co-evolutionary outcomes on macro-level epidemics, we develop a co-evolutionary model with a combined host-defense strategy. Our results illustrate that host-pathogen co-evolution may induce infection cycling and lead to the vanishing of the disease-induced hydra effect, whereas pathogen mono-evolution strengthens the hydra effect in both range and magnitude. As the recovery rate increases, we find a counter-intuitive effect of increased disease prevalence due to host-pathogen co-evolution: the disease is first highly infectious and lethal, then highly infectious but with low lethality. Such diverse outcomes suggest that this combined co-evolutionary and epidemiological framework holds great promise for a better understanding of infection.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.