3D bioprinted cell-laden GrooveNeuroTube: a multifunctional platform forex vivoneural cell migration and growth studies.

IF 8 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jagoda Litowczenko, Yannick Richter, Hawrez Ismael, Łukasz Popenda, Adam Ostrowski, Katarzyna Fiedorowicz, Jose Carlos Rodrigez Cabello, Jacek K Wychowaniec, Krzysztof Tadyszak
{"title":"3D bioprinted cell-laden GrooveNeuroTube: a multifunctional platform for<i>ex vivo</i>neural cell migration and growth studies.","authors":"Jagoda Litowczenko, Yannick Richter, Hawrez Ismael, Łukasz Popenda, Adam Ostrowski, Katarzyna Fiedorowicz, Jose Carlos Rodrigez Cabello, Jacek K Wychowaniec, Krzysztof Tadyszak","doi":"10.1088/1758-5090/ae0550","DOIUrl":null,"url":null,"abstract":"<p><p>Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed<b><i>GrooveNeuroTube</i></b>is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.<i>In vitro</i>studies showed that<b><i>GrooveNeuroTube</i></b>significantly promoted migration of dorsal root ganglion (DRG) neuronal cells, 3D bioprinted at the far ends of the conduit to imitate a proximal nerve injury as a novel<i>ex vivo</i>model. A long-term culture of up to 60 d was employed to better mimic<i>in vivo</i>conditions. This model tested the effects of pulsed electromagnetic field stimulation on neural tissue development. After 60 d,<b><i>GrooveNeuroTube</i></b>showed a 32% cell migration increase compared to the growth-factor-group and 105% compared to the no-growth-factor condition. These results confirm that the<b><i>GrooveNeuroTube</i></b>system can effectively support sustained neural cell migration and maturation over extended periods, proving a new technology for testing peripheral nerve injury<i>ex vivo</i>.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ae0550","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developedGrooveNeuroTubeis composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.In vitrostudies showed thatGrooveNeuroTubesignificantly promoted migration of dorsal root ganglion (DRG) neuronal cells, 3D bioprinted at the far ends of the conduit to imitate a proximal nerve injury as a novelex vivomodel. A long-term culture of up to 60 d was employed to better mimicin vivoconditions. This model tested the effects of pulsed electromagnetic field stimulation on neural tissue development. After 60 d,GrooveNeuroTubeshowed a 32% cell migration increase compared to the growth-factor-group and 105% compared to the no-growth-factor condition. These results confirm that theGrooveNeuroTubesystem can effectively support sustained neural cell migration and maturation over extended periods, proving a new technology for testing peripheral nerve injuryex vivo.

3D生物打印细胞负载的GrooveNeuroTube:一种用于静脉神经细胞迁移和生长研究的多功能平台。
广泛的周围神经损伤往往导致神经功能的丧失,由于缓慢的再生和有限的恢复在大间隙。目前的临床干预措施,如神经引导导管(NGCs),在创造有效支持神经修复的仿生微环境方面面临挑战。开发的GrooveNeuroTube由透明质酸甲基丙烯酸酯和明胶甲基丙烯酸酯水凝胶组成,并将活性物质(生长因子和抗菌剂)封装在3d打印PCL网格纤维制成的NGC导管中。体外研究表明,GrooveNeuroTube显著促进了背根神经节(DRG)神经元细胞的迁移,在管道远端进行生物3D打印以模拟近端神经损伤作为一种新的离体模型。采用长达60天的长期培养来更好地模拟体内条件。该模型测试了脉冲电磁场(PEMF)刺激对神经组织发育的影响。60天后,与生长因子组相比,GrooveNeuroTube的细胞迁移量增加了32%,与无生长因子组相比增加了105%。这些结果证实,GrooveNeuroTube系统可以有效地支持长时间持续的神经细胞迁移和成熟,证明了一种检测外周神经损伤的新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信