Cross-reactivities in conjugation reactions involving iron oxide nanoparticles.

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Beilstein Journal of Nanotechnology Pub Date : 2025-08-29 eCollection Date: 2025-01-01 DOI:10.3762/bjnano.16.106
Shoronia N Cross, Katalin V Korpany, Hanine Zakaria, Amy Szuchmacher Blum
{"title":"Cross-reactivities in conjugation reactions involving iron oxide nanoparticles.","authors":"Shoronia N Cross, Katalin V Korpany, Hanine Zakaria, Amy Szuchmacher Blum","doi":"10.3762/bjnano.16.106","DOIUrl":null,"url":null,"abstract":"<p><p>The preparation of multimodal nanoparticles by capping magnetic iron oxide nanoparticles (IONPs) with functional organic molecules is a major area of research for biomedical applications. Conjugation reactions, such as carbodiimide coupling and the highly selective class of reactions known as \"click chemistry\", have been instrumental in tailoring the ligand layers of IONPs to produce functional biomedical nanomaterials. However, few studies report the controls performed to determine if the loading of molecules onto IONPs is due to the proposed coupling reaction(s) employed, or some other unknown interaction with the IONP surface. Herein, we use 3,4-dihydroxybenzoic acid-functionalized IONPs (IONP-3,4-DHBA) as a platform upon which carbodiimide coupling can be used to conjugate clickable small molecules for further functionalization using two common click reactions, namely, the copper-catalyzed azide-alkyne cycloaddition (CuAAC), and the thiol-maleimide Michael addition reactions. Through the judicious use of controls, we demonstrate significant cross-reactivities of amines, thiols, maleimides, and common disulfide reducing agents with surface Fe of IONPs and show how these unwanted interactions can produce false positive results. Without proper controls, these can lead to erroneous conclusions about the efficacy of conjugation reactions, which can have detrimental impacts on the functionality and safety of IONPs in biomedical applications.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1504-1521"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.106","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The preparation of multimodal nanoparticles by capping magnetic iron oxide nanoparticles (IONPs) with functional organic molecules is a major area of research for biomedical applications. Conjugation reactions, such as carbodiimide coupling and the highly selective class of reactions known as "click chemistry", have been instrumental in tailoring the ligand layers of IONPs to produce functional biomedical nanomaterials. However, few studies report the controls performed to determine if the loading of molecules onto IONPs is due to the proposed coupling reaction(s) employed, or some other unknown interaction with the IONP surface. Herein, we use 3,4-dihydroxybenzoic acid-functionalized IONPs (IONP-3,4-DHBA) as a platform upon which carbodiimide coupling can be used to conjugate clickable small molecules for further functionalization using two common click reactions, namely, the copper-catalyzed azide-alkyne cycloaddition (CuAAC), and the thiol-maleimide Michael addition reactions. Through the judicious use of controls, we demonstrate significant cross-reactivities of amines, thiols, maleimides, and common disulfide reducing agents with surface Fe of IONPs and show how these unwanted interactions can produce false positive results. Without proper controls, these can lead to erroneous conclusions about the efficacy of conjugation reactions, which can have detrimental impacts on the functionality and safety of IONPs in biomedical applications.

氧化铁纳米颗粒偶联反应的交叉反应性。
用功能性有机分子包裹磁性氧化铁纳米粒子(IONPs)制备多模态纳米粒子是生物医学应用的一个重要研究领域。共轭反应,如碳二亚胺偶联和被称为“点击化学”的高选择性反应,在调整离子螯合蛋白的配体层以生产功能性生物医学纳米材料方面发挥了重要作用。然而,很少有研究报道进行了对照,以确定分子加载到IONP上是由于所采用的偶联反应,还是由于与IONP表面的其他未知相互作用。本文以3,4-二羟基苯甲酸功能化的离子偶联(ionp -3,4- dhba)为平台,利用两种常见的键合反应,即铜催化叠氮-炔环加成反应(CuAAC)和硫醇-马来酰亚胺Michael加成反应,将可键合的小分子进行进一步的功能化。通过明智地使用对照,我们证明了胺、硫醇、马来酰亚胺和常见的二硫还原剂与离子表面铁的显著交叉反应性,并展示了这些不希望的相互作用如何产生假阳性结果。如果没有适当的控制,这些可能导致有关偶联反应功效的错误结论,这可能对IONPs在生物医学应用中的功能和安全性产生不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信