{"title":"Phosphorothioate-Modified DNA Aptamer-Based PROTACs for Targeted Degradation of Estrogen Receptor α.","authors":"Daishi Watanabe, Hitomi Terauchi, Hinata Osawa, Miyako Naganuma, Genichiro Tsuji, Yosuke Demizu","doi":"10.1021/acs.bioconjchem.5c00242","DOIUrl":null,"url":null,"abstract":"<p><p>Proteolysis-targeting chimeras (PROTACs) have emerged as a powerful modality for selectively degrading intracellular proteins via the ubiquitin-proteasome system. However, their development is often hindered by the limited availability of high-affinity small-molecule ligands, particularly for challenging targets, such as transcription factors. Aptamers─synthetic oligonucleotides with high affinity and specificity─offer a promising alternative as target-binding modules in the PROTAC design. In this study, we developed DNA aptamer-based PROTACs targeting estrogen receptor α (ERα), incorporating phosphorothioate (PS) backbone modifications to enhance nuclease resistance and cellular uptake. A series of aptamer-PROTACs with varying PS modification patterns were synthesized and conjugated to a cereblon ligand via copper-catalyzed click chemistry. Biophysical analyses demonstrated that PS modifications preserved the aptamer's secondary structure and binding affinity. Notably, both fully and partially PS-modified constructs exhibited significantly improved nuclease stability and intracellular delivery in MCF-7 cells. Western blot analysis confirmed that these modifications enhanced the ERα degradation activity, with partially modified constructs achieving a favorable balance between potency and specificity. In contrast, scrambled-sequence controls bearing full PS modification showed nonspecific degradation, underscoring the need for judicious PS positioning. Our findings highlight the utility of strategic PS modification for optimizing the pharmacological properties of aptamer-based PROTACs and provide a design framework for developing chemically stabilized nucleic acid degraders capable of targeting previously \"undruggable\" intracellular proteins.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00242","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a powerful modality for selectively degrading intracellular proteins via the ubiquitin-proteasome system. However, their development is often hindered by the limited availability of high-affinity small-molecule ligands, particularly for challenging targets, such as transcription factors. Aptamers─synthetic oligonucleotides with high affinity and specificity─offer a promising alternative as target-binding modules in the PROTAC design. In this study, we developed DNA aptamer-based PROTACs targeting estrogen receptor α (ERα), incorporating phosphorothioate (PS) backbone modifications to enhance nuclease resistance and cellular uptake. A series of aptamer-PROTACs with varying PS modification patterns were synthesized and conjugated to a cereblon ligand via copper-catalyzed click chemistry. Biophysical analyses demonstrated that PS modifications preserved the aptamer's secondary structure and binding affinity. Notably, both fully and partially PS-modified constructs exhibited significantly improved nuclease stability and intracellular delivery in MCF-7 cells. Western blot analysis confirmed that these modifications enhanced the ERα degradation activity, with partially modified constructs achieving a favorable balance between potency and specificity. In contrast, scrambled-sequence controls bearing full PS modification showed nonspecific degradation, underscoring the need for judicious PS positioning. Our findings highlight the utility of strategic PS modification for optimizing the pharmacological properties of aptamer-based PROTACs and provide a design framework for developing chemically stabilized nucleic acid degraders capable of targeting previously "undruggable" intracellular proteins.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.