{"title":"Living with temperature changes: Salicylic acid at the crossroads of plant immunity and temperature resilience","authors":"Wei Li, Guoqing Sun, Wentao Yang, Naiyi Lin, Kaihuai Li, Fengquan Liu, Ming Chang (常明)","doi":"10.1126/sciadv.ady3327","DOIUrl":null,"url":null,"abstract":"<div >Salicylic acid (SA) is a key defense hormone shaped by temperature. High temperatures suppress, while low temperatures enhance, SA biosynthesis and signaling, thereby influencing plant immunity and temperature resilience. This review synthesizes current understanding of how temperature modulates SA pathways and their cross-talk with other hormones to balance growth and defense. We also propose a conceptual model positioning SA as a central integrator of temperature perception, immune regulation, and hormonal signaling. However, key questions remain: How do plants sense temperature shifts to regulate SA dynamics? How do temperature-induced epigenetic changes in SA pathways contribute to long-term adaptation? And how can these insights inform crop improvement? Addressing these gaps is essential for developing climate-resilient crops.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 37","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ady3327","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ady3327","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Salicylic acid (SA) is a key defense hormone shaped by temperature. High temperatures suppress, while low temperatures enhance, SA biosynthesis and signaling, thereby influencing plant immunity and temperature resilience. This review synthesizes current understanding of how temperature modulates SA pathways and their cross-talk with other hormones to balance growth and defense. We also propose a conceptual model positioning SA as a central integrator of temperature perception, immune regulation, and hormonal signaling. However, key questions remain: How do plants sense temperature shifts to regulate SA dynamics? How do temperature-induced epigenetic changes in SA pathways contribute to long-term adaptation? And how can these insights inform crop improvement? Addressing these gaps is essential for developing climate-resilient crops.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.