Surface Acoustic Waves in Layer–Substrate Structures of Arbitrary Anisotropy

IF 0.5 4区 材料科学 Q4 CRYSTALLOGRAPHY
A. N. Darinskii, Yu. A. Kosevich
{"title":"Surface Acoustic Waves in Layer–Substrate Structures of Arbitrary Anisotropy","authors":"A. N. Darinskii,&nbsp;Yu. A. Kosevich","doi":"10.1134/S1063774525600723","DOIUrl":null,"url":null,"abstract":"<p>The existence of surface acoustic waves (SAWs) in a semi-infinite substrate with a deposited solid layer is theoretically investigated. The substrate and the layer are not piezoelectrics but may belong to any class of crystallographic symmetry. By writing down the dispersion equation in the form of a condition on the substrate and layer impedance matrices, it is possible to determine, using the properties of impedances, the maximum allowable number of surface waves, depending on the contact type and the relation between the velocities of bulk waves in the substrate and layer materials. A dispersion equation is derived for the symmetric orientation of an orthorhombic substrate with a deposited monoatomic layer, and the possibility of existence of a purely flexure surface acoustic wave in the case of a very hard surface layer, for example, a graphene monolayer on a soft polymer substrate, is shown.</p>","PeriodicalId":527,"journal":{"name":"Crystallography Reports","volume":"70 4","pages":"595 - 605"},"PeriodicalIF":0.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystallography Reports","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1063774525600723","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of surface acoustic waves (SAWs) in a semi-infinite substrate with a deposited solid layer is theoretically investigated. The substrate and the layer are not piezoelectrics but may belong to any class of crystallographic symmetry. By writing down the dispersion equation in the form of a condition on the substrate and layer impedance matrices, it is possible to determine, using the properties of impedances, the maximum allowable number of surface waves, depending on the contact type and the relation between the velocities of bulk waves in the substrate and layer materials. A dispersion equation is derived for the symmetric orientation of an orthorhombic substrate with a deposited monoatomic layer, and the possibility of existence of a purely flexure surface acoustic wave in the case of a very hard surface layer, for example, a graphene monolayer on a soft polymer substrate, is shown.

Abstract Image

Abstract Image

任意各向异性层-衬底结构中的表面声波
本文从理论上研究了具有固体沉积层的半无限基材中表面声波的存在性。衬底和层不是压电的,但可以属于任何一类的晶体对称。通过以衬底和层阻抗矩阵的条件形式写下色散方程,就可以利用阻抗的性质,根据衬底和层材料中体波的接触类型和速度之间的关系,确定表面波的最大允许数。导出了具有沉积单原子层的正交基板对称取向的色散方程,并显示了在非常硬的表面层(例如,软聚合物基板上的石墨烯单层)中存在纯弯曲表面声波的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystallography Reports
Crystallography Reports 化学-晶体学
CiteScore
1.10
自引率
28.60%
发文量
96
审稿时长
4-8 weeks
期刊介绍: Crystallography Reports is a journal that publishes original articles short communications, and reviews on various aspects of crystallography: diffraction and scattering of X-rays, electrons, and neutrons, determination of crystal structure of inorganic and organic substances, including proteins and other biological substances; UV-VIS and IR spectroscopy; growth, imperfect structure and physical properties of crystals; thin films, liquid crystals, nanomaterials, partially disordered systems, and the methods of studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信