Vision system utilizing large-area organic single crystals for sensory applications

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lihua He  (, ), Yi Zou  (, ), Chengtai Li  (, ), Shuming Duan  (, ), Xiaochen Ren  (, ), Wenping Hu  (, )
{"title":"Vision system utilizing large-area organic single crystals for sensory applications","authors":"Lihua He \n (,&nbsp;),&nbsp;Yi Zou \n (,&nbsp;),&nbsp;Chengtai Li \n (,&nbsp;),&nbsp;Shuming Duan \n (,&nbsp;),&nbsp;Xiaochen Ren \n (,&nbsp;),&nbsp;Wenping Hu \n (,&nbsp;)","doi":"10.1007/s40843-025-3641-y","DOIUrl":null,"url":null,"abstract":"<div><p>The development of brain-inspired neural network computing synaptic devices based on organic field-effect transistors (OFETs) represents a pivotal research frontier in neuromorphic computing and flexible electronics. These devices elucidate fundamental mechanistic parallels between biological neural networks and artificial systems, facilitating the paradigm shift in organic electronics from passive “sensing” to active “cognition”. This technological evolution enables loop perception-computation-decision architectures while unlocking transformative opportunities in intelligent hardware and medical technologies. Such pioneering advancements are poised to redefine the global semiconductor industry landscape by bridging neuromorphic engineering with next-generation bioelectronic applications, ultimately driving the convergence of adaptive learning systems and human-machine symbiotic interfaces. A low-voltage (1 V) C<sub>8</sub>-BTBT optoelectronic synaptic array (coefficient of variation in synaptic weight modulation: 8%) emulated human visual information processing under distinct cognitive states: dispersed-attention mode achieved rapid response and short-term plasticity, while focused-attention mode enabled noise suppression and long-term potentiation via carrier trapping modulation. This platform advances hardware-level perception-computation integration for biomimetic vision chips.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 9","pages":"3401 - 3408"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3641-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of brain-inspired neural network computing synaptic devices based on organic field-effect transistors (OFETs) represents a pivotal research frontier in neuromorphic computing and flexible electronics. These devices elucidate fundamental mechanistic parallels between biological neural networks and artificial systems, facilitating the paradigm shift in organic electronics from passive “sensing” to active “cognition”. This technological evolution enables loop perception-computation-decision architectures while unlocking transformative opportunities in intelligent hardware and medical technologies. Such pioneering advancements are poised to redefine the global semiconductor industry landscape by bridging neuromorphic engineering with next-generation bioelectronic applications, ultimately driving the convergence of adaptive learning systems and human-machine symbiotic interfaces. A low-voltage (1 V) C8-BTBT optoelectronic synaptic array (coefficient of variation in synaptic weight modulation: 8%) emulated human visual information processing under distinct cognitive states: dispersed-attention mode achieved rapid response and short-term plasticity, while focused-attention mode enabled noise suppression and long-term potentiation via carrier trapping modulation. This platform advances hardware-level perception-computation integration for biomimetic vision chips.

视觉系统利用大面积有机单晶的感官应用
基于有机场效应晶体管(ofet)的脑启发神经网络计算突触器件的发展代表了神经形态计算和柔性电子学的关键研究前沿。这些装置阐明了生物神经网络和人工系统之间的基本机制相似之处,促进了有机电子学从被动“感知”到主动“认知”的范式转变。这一技术发展使循环感知-计算-决策架构成为可能,同时为智能硬件和医疗技术带来变革机会。这些开创性的进步将神经形态工程与下一代生物电子应用相结合,最终推动自适应学习系统和人机共生界面的融合,从而重新定义全球半导体行业的格局。低电压(1 V) C8-BTBT光电突触阵列(突触权重调制变异系数为8%)模拟了不同认知状态下的人类视觉信息加工:分散注意模式实现了快速反应和短期可塑性,而集中注意模式通过载波捕获调制实现了噪声抑制和长期增强。该平台推进了仿生视觉芯片的硬件级感知计算集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信