Unlocking catalytic longevity: a critical review of catalyst deactivation pathways and regeneration technologies

IF 4.3 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2025-08-14 DOI:10.1039/D5YA00015G
Ifeanyi Michael Smarte Anekwe and Yusuf Makarfi Isa
{"title":"Unlocking catalytic longevity: a critical review of catalyst deactivation pathways and regeneration technologies","authors":"Ifeanyi Michael Smarte Anekwe and Yusuf Makarfi Isa","doi":"10.1039/D5YA00015G","DOIUrl":null,"url":null,"abstract":"<p >Catalyst deactivation remains a fundamental challenge in heterogeneous catalysis, compromising performance, efficiency, and sustainability across numerous industrial processes. This review critically examines the principal deactivation pathways including coking, poisoning, thermal degradation, and mechanical damage and evaluates the breadth of regeneration strategies developed to restore catalytic activity. Traditional methods such as oxidation, gasification, and hydrogenation are assessed alongside emerging approaches like supercritical fluid extraction (SFE), microwave-assisted regeneration (MAR), plasma-assisted regeneration (PAR) and atomic layer deposition (ALD) techniques. The environmental implications and operational trade-offs associated with each regeneration method were evaluated. By integrating recent scientific advancements with bibliometric analysis, this study identifies prevailing research trends and exposes key knowledge gaps in catalyst regeneration. Unlike prior reviews, this work offers a holistic perspective that spans multiple deactivation mechanisms and regeneration routes. Insights into process optimization and environmental impact reduction are presented to guide future innovation in sustainable catalytic system design. By contrasting current progress with unexplored potential, this study provides a basis for promoting innovation and management of sustainable catalysts. It serves as a strategic roadmap for enhancing catalyst longevity and performance in next-generation industrial applications.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 9","pages":" 1075-1113"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00015g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00015g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Catalyst deactivation remains a fundamental challenge in heterogeneous catalysis, compromising performance, efficiency, and sustainability across numerous industrial processes. This review critically examines the principal deactivation pathways including coking, poisoning, thermal degradation, and mechanical damage and evaluates the breadth of regeneration strategies developed to restore catalytic activity. Traditional methods such as oxidation, gasification, and hydrogenation are assessed alongside emerging approaches like supercritical fluid extraction (SFE), microwave-assisted regeneration (MAR), plasma-assisted regeneration (PAR) and atomic layer deposition (ALD) techniques. The environmental implications and operational trade-offs associated with each regeneration method were evaluated. By integrating recent scientific advancements with bibliometric analysis, this study identifies prevailing research trends and exposes key knowledge gaps in catalyst regeneration. Unlike prior reviews, this work offers a holistic perspective that spans multiple deactivation mechanisms and regeneration routes. Insights into process optimization and environmental impact reduction are presented to guide future innovation in sustainable catalytic system design. By contrasting current progress with unexplored potential, this study provides a basis for promoting innovation and management of sustainable catalysts. It serves as a strategic roadmap for enhancing catalyst longevity and performance in next-generation industrial applications.

Abstract Image

解锁催化寿命:催化剂失活途径和再生技术的重要回顾
催化剂失活仍然是多相催化的一个基本挑战,影响了许多工业过程的性能、效率和可持续性。这篇综述严格审查了主要的失活途径,包括焦化、中毒、热降解和机械损伤,并评估了为恢复催化活性而开发的再生策略的广度。传统的方法,如氧化、气化和氢化,与新兴的方法,如超临界流体萃取(SFE)、微波辅助再生(MAR)、等离子体辅助再生(PAR)和原子层沉积(ALD)技术一起进行了评估。评估了与每种再生方法相关的环境影响和操作权衡。通过将最新的科学进展与文献计量分析相结合,本研究确定了当前的研究趋势,并揭示了催化剂再生领域的关键知识差距。与之前的评论不同,这项工作提供了一个跨越多种失活机制和再生途径的整体视角。提出了工艺优化和环境影响减少的见解,以指导可持续催化系统设计的未来创新。通过对比目前的进展和未开发的潜力,本研究为促进可持续催化剂的创新和管理提供了基础。它是提高下一代工业应用中催化剂寿命和性能的战略路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信