{"title":"An Interpretable Self-Guided Learning Model With Knowledge Distillation for Intelligent Fault Diagnosis of Rotating Machinery","authors":"Sha Wei;Yifeng Zhu;Qingbo He;Dong Wang;Shulin Liu;Zhike Peng","doi":"10.1109/TIM.2025.3606060","DOIUrl":null,"url":null,"abstract":"Neural networks are widely applied in fault diagnosis of rotating machinery due to their powerful feature extraction and classification capabilities. However, their inherent black-box nature and reliance on predefined signal processing methods limit interpretability and adaptability in complex industrial scenarios. Knowledge distillation (KD) offers an effective approach to transfer knowledge from complex models to lightweight models while preserving the original performance of the model, but KD highly requires pretrained complex models. This article proposed a self-guided learning model (SGLM) that integrates adaptive feature extraction with knowledge transfer mechanisms, achieving both high diagnostic accuracy and physical interpretability. Specifically, the proposed SGLM employs learnable wavelet kernel functions to dynamically decompose raw vibration signals into multilevel subbands, adaptively capturing critical features for fault diagnosis. Further, the proposed SGLM eliminates dependence on external complex models by partitioning the network into hierarchical subsections, where knowledge from deeper layers can guide shallow layers. Experimental results on two datasets demonstrate the superior performance of SGLM, achieving 99.50% accuracy on the bearing dataset and 99.67% accuracy on the planetary gearbox dataset. The interpretability of SGLM is proven through three interpretability mechanisms. Meanwhile, SGLM’s effectiveness and practicality are validated via ablation, cross-validation, and efficiency analysis.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-13"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11151557/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Neural networks are widely applied in fault diagnosis of rotating machinery due to their powerful feature extraction and classification capabilities. However, their inherent black-box nature and reliance on predefined signal processing methods limit interpretability and adaptability in complex industrial scenarios. Knowledge distillation (KD) offers an effective approach to transfer knowledge from complex models to lightweight models while preserving the original performance of the model, but KD highly requires pretrained complex models. This article proposed a self-guided learning model (SGLM) that integrates adaptive feature extraction with knowledge transfer mechanisms, achieving both high diagnostic accuracy and physical interpretability. Specifically, the proposed SGLM employs learnable wavelet kernel functions to dynamically decompose raw vibration signals into multilevel subbands, adaptively capturing critical features for fault diagnosis. Further, the proposed SGLM eliminates dependence on external complex models by partitioning the network into hierarchical subsections, where knowledge from deeper layers can guide shallow layers. Experimental results on two datasets demonstrate the superior performance of SGLM, achieving 99.50% accuracy on the bearing dataset and 99.67% accuracy on the planetary gearbox dataset. The interpretability of SGLM is proven through three interpretability mechanisms. Meanwhile, SGLM’s effectiveness and practicality are validated via ablation, cross-validation, and efficiency analysis.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.