{"title":"A bi-Stirling-Euler-Mahonian polynomial","authors":"Chao Xu, Jiang Zeng","doi":"10.1016/j.aam.2025.102975","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by recent work on (re)mixed Eulerian numbers, we provide a combinatorial interpretation of a subfamily of the remixed Eulerian numbers introduced by Nadeau and Tewari. More specifically, we show that these numbers can be realized as the generating polynomials of permutations with respect to the statistics of left-to-right minima, right-to-left minima, descents, and the mixed major index. Our results generalize both the bi-Stirling-Eulerian polynomials of Carlitz-Scoville and the Stirling-Euler-Mahonian polynomials of Butler.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"173 ","pages":"Article 102975"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582500137X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by recent work on (re)mixed Eulerian numbers, we provide a combinatorial interpretation of a subfamily of the remixed Eulerian numbers introduced by Nadeau and Tewari. More specifically, we show that these numbers can be realized as the generating polynomials of permutations with respect to the statistics of left-to-right minima, right-to-left minima, descents, and the mixed major index. Our results generalize both the bi-Stirling-Eulerian polynomials of Carlitz-Scoville and the Stirling-Euler-Mahonian polynomials of Butler.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.