A bi-Stirling-Euler-Mahonian polynomial

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Chao Xu, Jiang Zeng
{"title":"A bi-Stirling-Euler-Mahonian polynomial","authors":"Chao Xu,&nbsp;Jiang Zeng","doi":"10.1016/j.aam.2025.102975","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by recent work on (re)mixed Eulerian numbers, we provide a combinatorial interpretation of a subfamily of the remixed Eulerian numbers introduced by Nadeau and Tewari. More specifically, we show that these numbers can be realized as the generating polynomials of permutations with respect to the statistics of left-to-right minima, right-to-left minima, descents, and the mixed major index. Our results generalize both the bi-Stirling-Eulerian polynomials of Carlitz-Scoville and the Stirling-Euler-Mahonian polynomials of Butler.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"173 ","pages":"Article 102975"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582500137X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by recent work on (re)mixed Eulerian numbers, we provide a combinatorial interpretation of a subfamily of the remixed Eulerian numbers introduced by Nadeau and Tewari. More specifically, we show that these numbers can be realized as the generating polynomials of permutations with respect to the statistics of left-to-right minima, right-to-left minima, descents, and the mixed major index. Our results generalize both the bi-Stirling-Eulerian polynomials of Carlitz-Scoville and the Stirling-Euler-Mahonian polynomials of Butler.
一个双stirling - euler - mahonian多项式
受最近关于(重)混合欧拉数工作的启发,我们对Nadeau和Tewari引入的重混合欧拉数的一个亚族提供了一个组合解释。更具体地说,我们表明这些数字可以被实现为相对于从左到右最小值、从右到左最小值、下降和混合主指数的统计的排列的生成多项式。我们的结果推广了Carlitz-Scoville的双斯特林-欧拉多项式和Butler的斯特林-欧拉- mahonian多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信