Axel Degrande , Louise Wittouck , Pieter D'Hooghe , Matthias Peiffer , Thomas Tampere , Sam Van der Jeught , Arne Burssens , Amélie Chevalier
{"title":"External torque application during assessment of syndesmotic ankle lesions: A systematic review","authors":"Axel Degrande , Louise Wittouck , Pieter D'Hooghe , Matthias Peiffer , Thomas Tampere , Sam Van der Jeught , Arne Burssens , Amélie Chevalier","doi":"10.1016/j.clinbiomech.2025.106662","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Syndesmotic ankle injuries, particularly those involving the distal tibiofibular joint, are challenging to diagnose due to subtle clinical presentation and complex ankle biomechanics. Both clinical and biomechanical studies struggle with accurately assessing the severity and extent of these injuries. External torque has recently shown promise in enhancing the detection and assessment of syndesmotic injuries, especially in weight-bearing computed tomography (WBCT). This study explores the impact of external torque on the assessment of syndesmotic ankle lesions in clinical versus biomechanical studies.</div></div><div><h3>Methods</h3><div>A systematic search was conducted using PubMed, Scopus, EMBASE, The Cochrane Library, and Web of Science. The review protocol was registered on PROSPERO (CRD42024535265). Inclusion criteria were biomechanical studies on lower limbs with intact and sectioned syndesmosis; clinical studies comparing injured ankles to healthy contralateral ones; and studies applying torque or weight-bearing to injured ankles. Exclusion criteria consisted of reviews, meta-analyses, studies on syndesmosis repair, acute injuries involving fractures, and studies lacking measurements.</div></div><div><h3>Findings</h3><div>Eleven studies met the inclusion criteria, including eight biomechanical and three clinical studies.</div></div><div><h3>Interpretation</h3><div>While biomechanical evidence provides a solid foundation, its translation into clinical practice requires further validation. The importance of assessment of the ankle syndesmosis under torque has been demonstrated, and the application of external torque shows promising results. Multiple studies indicate that applying an external torque between 4.5 and 7.5 [Nm] is sufficient to distinguish between intact and sectioned syndesmotic injuries. However, the need for a standardized diagnostic tool has yet to be established.</div></div>","PeriodicalId":50992,"journal":{"name":"Clinical Biomechanics","volume":"130 ","pages":"Article 106662"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003325002359","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Syndesmotic ankle injuries, particularly those involving the distal tibiofibular joint, are challenging to diagnose due to subtle clinical presentation and complex ankle biomechanics. Both clinical and biomechanical studies struggle with accurately assessing the severity and extent of these injuries. External torque has recently shown promise in enhancing the detection and assessment of syndesmotic injuries, especially in weight-bearing computed tomography (WBCT). This study explores the impact of external torque on the assessment of syndesmotic ankle lesions in clinical versus biomechanical studies.
Methods
A systematic search was conducted using PubMed, Scopus, EMBASE, The Cochrane Library, and Web of Science. The review protocol was registered on PROSPERO (CRD42024535265). Inclusion criteria were biomechanical studies on lower limbs with intact and sectioned syndesmosis; clinical studies comparing injured ankles to healthy contralateral ones; and studies applying torque or weight-bearing to injured ankles. Exclusion criteria consisted of reviews, meta-analyses, studies on syndesmosis repair, acute injuries involving fractures, and studies lacking measurements.
Findings
Eleven studies met the inclusion criteria, including eight biomechanical and three clinical studies.
Interpretation
While biomechanical evidence provides a solid foundation, its translation into clinical practice requires further validation. The importance of assessment of the ankle syndesmosis under torque has been demonstrated, and the application of external torque shows promising results. Multiple studies indicate that applying an external torque between 4.5 and 7.5 [Nm] is sufficient to distinguish between intact and sectioned syndesmotic injuries. However, the need for a standardized diagnostic tool has yet to be established.
期刊介绍:
Clinical Biomechanics is an international multidisciplinary journal of biomechanics with a focus on medical and clinical applications of new knowledge in the field.
The science of biomechanics helps explain the causes of cell, tissue, organ and body system disorders, and supports clinicians in the diagnosis, prognosis and evaluation of treatment methods and technologies. Clinical Biomechanics aims to strengthen the links between laboratory and clinic by publishing cutting-edge biomechanics research which helps to explain the causes of injury and disease, and which provides evidence contributing to improved clinical management.
A rigorous peer review system is employed and every attempt is made to process and publish top-quality papers promptly.
Clinical Biomechanics explores all facets of body system, organ, tissue and cell biomechanics, with an emphasis on medical and clinical applications of the basic science aspects. The role of basic science is therefore recognized in a medical or clinical context. The readership of the journal closely reflects its multi-disciplinary contents, being a balance of scientists, engineers and clinicians.
The contents are in the form of research papers, brief reports, review papers and correspondence, whilst special interest issues and supplements are published from time to time.
Disciplines covered include biomechanics and mechanobiology at all scales, bioengineering and use of tissue engineering and biomaterials for clinical applications, biophysics, as well as biomechanical aspects of medical robotics, ergonomics, physical and occupational therapeutics and rehabilitation.