Research and optimization of configurable modular thermal management system for multi-ambient temperatures

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Xiaoyong Gu , Guojie Chao , Ye Zou , Xiang Jiao , Biwen Chen
{"title":"Research and optimization of configurable modular thermal management system for multi-ambient temperatures","authors":"Xiaoyong Gu ,&nbsp;Guojie Chao ,&nbsp;Ye Zou ,&nbsp;Xiang Jiao ,&nbsp;Biwen Chen","doi":"10.1016/j.rineng.2025.107164","DOIUrl":null,"url":null,"abstract":"<div><div>It is crucial to keep the temperature of lithium-ion batteries within a reasonable range. This study presents a configurable modular thermal management system that integrates freely configurable active and passive thermal management modules to meet diverse application demands. A bio-based phase change material (PCM) with a phase transition temperature of 40.1°C was developed for a passive thermal management module. A model of battery thermal management was developed to assess the impacts of PCM geometry and active thermal management parameters on battery pack temperatures. Building on this, the real-world applicability of the thermal management system was evaluated across diverse cities, leading to optimized solutions tailored to each city. The results indicate that increasing the PCM height enhances cooling capacity by 26%, but extends heating time by 75% compared to increasing its width. Raising the heating temperature from 35°C to 45°C shortens heating time by 45%, but increases energy consumption by 49%. High-temperature cities require more active thermal management modules, maintaining battery pack temperature less than 45°C at a 42°C ambient temperature. Temperate cities maximize passive module integration, achieving a battery pack temperature of less than 45°C at a 38°C ambient temperature without energy consumption. Low-temperature cities utilize heating plate substitution for an active thermal management module, yielding 10% energy savings. This research provides a reference basis for the direct selection and application of the configurable modular thermal management system in diverse scenarios.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107164"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025032190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is crucial to keep the temperature of lithium-ion batteries within a reasonable range. This study presents a configurable modular thermal management system that integrates freely configurable active and passive thermal management modules to meet diverse application demands. A bio-based phase change material (PCM) with a phase transition temperature of 40.1°C was developed for a passive thermal management module. A model of battery thermal management was developed to assess the impacts of PCM geometry and active thermal management parameters on battery pack temperatures. Building on this, the real-world applicability of the thermal management system was evaluated across diverse cities, leading to optimized solutions tailored to each city. The results indicate that increasing the PCM height enhances cooling capacity by 26%, but extends heating time by 75% compared to increasing its width. Raising the heating temperature from 35°C to 45°C shortens heating time by 45%, but increases energy consumption by 49%. High-temperature cities require more active thermal management modules, maintaining battery pack temperature less than 45°C at a 42°C ambient temperature. Temperate cities maximize passive module integration, achieving a battery pack temperature of less than 45°C at a 38°C ambient temperature without energy consumption. Low-temperature cities utilize heating plate substitution for an active thermal management module, yielding 10% energy savings. This research provides a reference basis for the direct selection and application of the configurable modular thermal management system in diverse scenarios.
多环境温度可配置模块化热管理系统的研究与优化
将锂离子电池的温度控制在合理的范围内是至关重要的。本研究提出了一个可配置的模块化热管理系统,该系统集成了可自由配置的主动式和被动式热管理模块,以满足不同的应用需求。研制了一种相变温度为40.1℃的生物基相变材料(PCM)作为被动热管理模块。建立了一个电池热管理模型,以评估PCM几何形状和主动热管理参数对电池组温度的影响。在此基础上,热管理系统在不同城市的实际适用性进行了评估,从而为每个城市量身定制优化解决方案。结果表明,与增大PCM宽度相比,增大PCM高度可使制冷量提高26%,但加热时间延长75%。将加热温度从35℃提高到45℃,加热时间缩短45%,但能耗增加49%。高温城市需要更主动的热管理模块,在42℃的环境温度下保持电池组温度不超过45℃。温带城市最大限度地提高了无源模块的集成度,在38℃的环境温度下实现了电池组温度低于45℃且不能耗。低温城市利用加热板替代主动热管理模块,可节省10%的能源。本研究为可配置模块化热管理系统在不同场景下的直接选择和应用提供了参考依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信