Atomic vacancy effects on enhanced photoresponse in 2D MoS2/VSe2 lateral heterostructure

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
You Xie, Zheng-Yong Chen, Xin-Wen Jin, Yi-An Liu, Jia-Hao Wang, Li-Yong Chen, Tao Zhang
{"title":"Atomic vacancy effects on enhanced photoresponse in 2D MoS2/VSe2 lateral heterostructure","authors":"You Xie,&nbsp;Zheng-Yong Chen,&nbsp;Xin-Wen Jin,&nbsp;Yi-An Liu,&nbsp;Jia-Hao Wang,&nbsp;Li-Yong Chen,&nbsp;Tao Zhang","doi":"10.1016/j.physb.2025.417775","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance polarization-sensitive photodetectors is crucial for advancing optical communication, imaging systems, yet remains challenging due to fundamental limitations in conventional materials. This study presents a comprehensive investigation of vacancy-engineered MoS<sub>2</sub>/VSe<sub>2</sub> van der Waals heterostructures for polarization-sensitive photodetection applications. Through systematic first-principles calculations and non-equilibrium Green's function methods, we demonstrate that strategic vacancy introduction enables precise control over both light absorption characteristics and photocurrent generation. The MoS<sub>2</sub>/VSe<sub>2</sub> heterostructure exhibits remarkable spectral tunability, with single-atom vacancies inducing red-shifted absorption while double vacancies cause blue-shifts. Most notably, double-Se vacancies achieve a record 210 % photocurrent enhancement through suppressed carrier recombination, accompanied by exceptional polarization sensitivity (extinction ratio = 364.6 at 2.4 eV). Vacancy defects generate novel optoelectronic phenomena including reversible photocurrent switching under specific illumination conditions. These findings establish vacancy engineering as a powerful approach for developing next-generation polarized-light photodetectors with performance metrics surpassing conventional 2D material systems.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417775"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625008920","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance polarization-sensitive photodetectors is crucial for advancing optical communication, imaging systems, yet remains challenging due to fundamental limitations in conventional materials. This study presents a comprehensive investigation of vacancy-engineered MoS2/VSe2 van der Waals heterostructures for polarization-sensitive photodetection applications. Through systematic first-principles calculations and non-equilibrium Green's function methods, we demonstrate that strategic vacancy introduction enables precise control over both light absorption characteristics and photocurrent generation. The MoS2/VSe2 heterostructure exhibits remarkable spectral tunability, with single-atom vacancies inducing red-shifted absorption while double vacancies cause blue-shifts. Most notably, double-Se vacancies achieve a record 210 % photocurrent enhancement through suppressed carrier recombination, accompanied by exceptional polarization sensitivity (extinction ratio = 364.6 at 2.4 eV). Vacancy defects generate novel optoelectronic phenomena including reversible photocurrent switching under specific illumination conditions. These findings establish vacancy engineering as a powerful approach for developing next-generation polarized-light photodetectors with performance metrics surpassing conventional 2D material systems.
原子空位效应对二维MoS2/VSe2横向异质结构光响应增强的影响
高性能偏振敏感光电探测器的发展对于推进光通信、成像系统至关重要,但由于传统材料的基本限制,仍然具有挑战性。本研究全面研究了用于偏振光探测应用的空位工程MoS2/VSe2范德华异质结构。通过系统的第一性原理计算和非平衡格林函数方法,我们证明了战略性空缺的引入可以精确控制光吸收特性和光电流的产生。MoS2/VSe2异质结构表现出显著的光谱可调性,单原子空位引起红移吸收,双原子空位引起蓝移吸收。最值得注意的是,双se空位通过抑制载流子复合实现了创纪录的210%的光电流增强,并伴有特殊的极化灵敏度(在2.4 eV下消光比= 364.6)。空位缺陷产生了新的光电现象,包括在特定照明条件下可逆的光电流开关。这些发现确立了空位工程作为开发下一代偏振光光电探测器的有力方法,其性能指标超过传统的二维材料系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信