3-Leibniz-Lie triple systems, deformations and cohomologies of nonabelian embedding tensors between Lie triple systems

IF 1.2 3区 数学 Q1 MATHEMATICS
Wen Teng
{"title":"3-Leibniz-Lie triple systems, deformations and cohomologies of nonabelian embedding tensors between Lie triple systems","authors":"Wen Teng","doi":"10.1016/j.geomphys.2025.105638","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, first we introduce the notion of nonabelian embedding tensors between Lie triple systems and show that nonabelian embedding tensors induce naturally 3-Leibniz algebras. Next, we introduce the notion of a 3-Leibniz-Lie triple system, which is the underlying algebraic structure of a nonabelian embedding tensor between Lie triple systems. Besides, we construct an <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-algebra whose Maurer-Cartan elements are nonabelian embedding tensors. Then, we have the twisted <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-algebra that governs deformations of nonabelian embedding tensors. Following this, we establish the cohomology of a nonabelian embedding tensor between Lie triple systems and realize it as the cohomology of the descendent 3-Leibniz algebra with coefficients in a suitable representation. As applications, we consider linear deformations of a nonabelian embedding tensor between Lie triple systems and demonstrate that they are governed by the above-established cohomology. Furthermore, the notion of Nijenhuis elements associated with a nonabelian embedding tensor is introduced to characterize trivial linear deformations. Finally, we provide relationships between nonabelian embedding tensors on Lie algebras and associated Lie triple systems.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"217 ","pages":"Article 105638"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025002220","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, first we introduce the notion of nonabelian embedding tensors between Lie triple systems and show that nonabelian embedding tensors induce naturally 3-Leibniz algebras. Next, we introduce the notion of a 3-Leibniz-Lie triple system, which is the underlying algebraic structure of a nonabelian embedding tensor between Lie triple systems. Besides, we construct an L-algebra whose Maurer-Cartan elements are nonabelian embedding tensors. Then, we have the twisted L-algebra that governs deformations of nonabelian embedding tensors. Following this, we establish the cohomology of a nonabelian embedding tensor between Lie triple systems and realize it as the cohomology of the descendent 3-Leibniz algebra with coefficients in a suitable representation. As applications, we consider linear deformations of a nonabelian embedding tensor between Lie triple systems and demonstrate that they are governed by the above-established cohomology. Furthermore, the notion of Nijenhuis elements associated with a nonabelian embedding tensor is introduced to characterize trivial linear deformations. Finally, we provide relationships between nonabelian embedding tensors on Lie algebras and associated Lie triple systems.
3-莱布尼兹-李三系,李三系间非abel嵌入张量的变形与上同调
本文首先在李三元系统中引入了非阿贝尔嵌入张量的概念,并证明了非阿贝尔嵌入张量可以自然地导出3-莱布尼兹代数。接下来,我们引入了3-莱布尼兹-李三元系统的概念,它是李三元系统之间的非abel嵌入张量的基本代数结构。此外,我们构造了一个毛雷尔-卡坦元素为非贝尔嵌入张量的L∞代数。然后,我们有控制非阿贝尔嵌入张量变形的扭曲L∞代数。在此基础上,我们建立了李三元系统间非贝尔嵌入张量的上同调,并将其实现为具有系数的派生3-莱布尼兹代数的上同调。作为应用,我们考虑了李三元系统之间的非abel嵌入张量的线性变形,并证明了它们受上述上同调的约束。此外,引入了与非abel嵌入张量相关的Nijenhuis元的概念来描述平凡的线性变形。最后,我们给出了李代数上的非abel嵌入张量与相关李三元系统之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信