Xinxin Li , Long Zhou , Dazheng Chen , Weidong Zhu , He Xi , Hang Dong , Wenming Chai , Hui Wang , Chunxiang Zhu , Jincheng Zhang , Yue Hao , Chunfu Zhang
{"title":"Additive engineering for colloid stabilization and crystallization control in slot-die coated large-area solar modules","authors":"Xinxin Li , Long Zhou , Dazheng Chen , Weidong Zhu , He Xi , Hang Dong , Wenming Chai , Hui Wang , Chunxiang Zhu , Jincheng Zhang , Yue Hao , Chunfu Zhang","doi":"10.1016/j.jechem.2025.08.028","DOIUrl":null,"url":null,"abstract":"<div><div>Scalable fabrication of homogeneous perovskite films remains crucial for bridging the efficiency gap between lab-scale solar cells and commercial solar modules. To tackle this issue, we introduce <em>N</em>-Cyano-4-methyl-<em>N</em>-phenylbenzenesulfonamide (CMPS) additives into perovskite precursors, enabling slot-die coating of large-area modules under ambient conditions. CMPS suppresses colloidal aggregation and delays crystallization, yielding high-quality uniform films. Small-area devices (0.07 cm<sup>2</sup> aperture area) incorporating CMPS exhibited a significant efficiency increase from 22.07 % to 24.58 %. Corresponding encapsulated devices maintained 85 % of their initial power conversion efficiency (PCE, average 23.56 %) after 1500 h of continuous maximum power point (MPP) tracking under one-sun illumination at 50–55 °C. Furthermore, we demonstrate impressive efficiency of perovskite solar modules, achieving 20.57 % (52 cm<sup>2</sup> aperture area) for 10 cm × 10 cm mini-modules and 17.02 % (260 cm<sup>2</sup> aperture area) for 21 cm × 21 cm sub-modules, representing the state-of-the-art performance for solution-processed devices at these scales.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"111 ","pages":"Pages 935-943"},"PeriodicalIF":14.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625006850","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Scalable fabrication of homogeneous perovskite films remains crucial for bridging the efficiency gap between lab-scale solar cells and commercial solar modules. To tackle this issue, we introduce N-Cyano-4-methyl-N-phenylbenzenesulfonamide (CMPS) additives into perovskite precursors, enabling slot-die coating of large-area modules under ambient conditions. CMPS suppresses colloidal aggregation and delays crystallization, yielding high-quality uniform films. Small-area devices (0.07 cm2 aperture area) incorporating CMPS exhibited a significant efficiency increase from 22.07 % to 24.58 %. Corresponding encapsulated devices maintained 85 % of their initial power conversion efficiency (PCE, average 23.56 %) after 1500 h of continuous maximum power point (MPP) tracking under one-sun illumination at 50–55 °C. Furthermore, we demonstrate impressive efficiency of perovskite solar modules, achieving 20.57 % (52 cm2 aperture area) for 10 cm × 10 cm mini-modules and 17.02 % (260 cm2 aperture area) for 21 cm × 21 cm sub-modules, representing the state-of-the-art performance for solution-processed devices at these scales.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy