Symmetric ideals and invariant Hilbert schemes

IF 0.8 2区 数学 Q2 MATHEMATICS
Sebastian Debus , Andreas Kretschmer
{"title":"Symmetric ideals and invariant Hilbert schemes","authors":"Sebastian Debus ,&nbsp;Andreas Kretschmer","doi":"10.1016/j.jalgebra.2025.08.023","DOIUrl":null,"url":null,"abstract":"<div><div>A symmetric ideal is an ideal in a polynomial ring which is stable under all permutations of the variables. In this paper we initiate a global study of zero-dimensional symmetric ideals. By this we mean a geometric study of the invariant Hilbert schemes <span><math><msubsup><mrow><mi>Hilb</mi></mrow><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msubsup><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> parametrizing symmetric subschemes of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> whose coordinate rings, as <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-modules, are isomorphic to a given representation <em>ρ</em>. In the case that <span><math><mi>ρ</mi><mo>=</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msup></math></span> is a permutation module corresponding to certain special types of partitions <em>λ</em> of <em>n</em>, we prove that <span><math><msubsup><mrow><mi>Hilb</mi></mrow><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msubsup><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> is irreducible or even smooth. We also prove irreducibility whenever <span><math><mi>dim</mi><mo>⁡</mo><mi>ρ</mi><mo>≤</mo><mn>2</mn><mi>n</mi></math></span> and the invariant Hilbert scheme is non-empty. In this same range, we classify all homogeneous symmetric ideals and decide which of these define singular points of <span><math><msubsup><mrow><mi>Hilb</mi></mrow><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msubsup><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. A central tool is the combinatorial theory of higher Specht polynomials.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 595-634"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A symmetric ideal is an ideal in a polynomial ring which is stable under all permutations of the variables. In this paper we initiate a global study of zero-dimensional symmetric ideals. By this we mean a geometric study of the invariant Hilbert schemes HilbρSn(Cn) parametrizing symmetric subschemes of Cn whose coordinate rings, as Sn-modules, are isomorphic to a given representation ρ. In the case that ρ=Mλ is a permutation module corresponding to certain special types of partitions λ of n, we prove that HilbρSn(Cn) is irreducible or even smooth. We also prove irreducibility whenever dimρ2n and the invariant Hilbert scheme is non-empty. In this same range, we classify all homogeneous symmetric ideals and decide which of these define singular points of HilbρSn(Cn). A central tool is the combinatorial theory of higher Specht polynomials.
对称理想和不变希尔伯特格式
对称理想是多项式环中在所有变量置换下都稳定的理想。本文对零维对称理想进行了全面的研究。这里我们指的是对不变希尔伯特方案HilbρSn(Cn)的几何研究,该方案参数化了Cn的对称子方案,其坐标环作为sn模,与给定的表示ρ同构。在ρ=Mλ是对应于n的某些特殊类型分区λ的置换模的情况下,证明了HilbρSn(Cn)是不可约的,甚至是光滑的。我们还证明了当dim ρ≤2n时的不可约性和不变Hilbert格式是非空的。在同一范围内,我们对所有齐次对称理想进行分类,并决定哪些理想定义了HilbρSn(Cn)的奇点。一个中心工具是高视域多项式的组合理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信