Towards the nerves of steel conjecture

IF 0.8 2区 数学 Q2 MATHEMATICS
Logan Hyslop
{"title":"Towards the nerves of steel conjecture","authors":"Logan Hyslop","doi":"10.1016/j.jalgebra.2025.08.028","DOIUrl":null,"url":null,"abstract":"<div><div>Given a local ⊗-triangulated category, and a fiber sequence <span><math><mi>y</mi><mover><mrow><mo>→</mo></mrow><mrow><mi>g</mi></mrow></mover><mn>1</mn><mover><mrow><mo>→</mo></mrow><mrow><mi>f</mi></mrow></mover><mi>x</mi></math></span>, one may ask if there is always a nonzero object <em>z</em> such that either <span><math><mi>z</mi><mo>⊗</mo><mi>f</mi></math></span> or <span><math><mi>z</mi><mo>⊗</mo><mi>g</mi></math></span> is ⊗-nilpotent. The claim that this property holds for all local ⊗-triangulated categories is equivalent to Balmer's “nerves of steel conjecture” <span><span>[7, Remark 5.15]</span></span>. In the present paper, we will see how this property can fail if the category we start with is not rigid, discuss a large class of categories where the property holds, and ultimately prove that the nerves of steel conjecture is equivalent to a stronger form of this property.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 544-565"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005010","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a local ⊗-triangulated category, and a fiber sequence yg1fx, one may ask if there is always a nonzero object z such that either zf or zg is ⊗-nilpotent. The claim that this property holds for all local ⊗-triangulated categories is equivalent to Balmer's “nerves of steel conjecture” [7, Remark 5.15]. In the present paper, we will see how this property can fail if the category we start with is not rigid, discuss a large class of categories where the property holds, and ultimately prove that the nerves of steel conjecture is equivalent to a stronger form of this property.
向着钢铁般的神经猜想
给定一个局部⊗三角化范畴和一个纤维序列y→g1→fx,人们可能会问是否总是存在一个非零对象z,使得z⊗f或z⊗g是⊗幂零的。这个性质适用于所有局部⊗三角化范畴的声明等价于Balmer的“钢的神经猜想”[7,注释5.15]。在本文中,我们将看到,如果我们开始的范畴不是刚性的,这个性质是如何失效的,我们讨论了一大类具有这个性质的范畴,并最终证明了钢神经猜想等价于这个性质的一个更强的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信