Intercalation-Pseudocapacitive Jarosite Anode for High-Performing Aqueous Lithium-Ion Hybrid Capacitors

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Peng Gong, Shuailei Liu, Mengsi Li, Xingjie Li, Shibo Chai, Jiale Xia*, Yuanyuan Li* and Jinping Liu*, 
{"title":"Intercalation-Pseudocapacitive Jarosite Anode for High-Performing Aqueous Lithium-Ion Hybrid Capacitors","authors":"Peng Gong,&nbsp;Shuailei Liu,&nbsp;Mengsi Li,&nbsp;Xingjie Li,&nbsp;Shibo Chai,&nbsp;Jiale Xia*,&nbsp;Yuanyuan Li* and Jinping Liu*,&nbsp;","doi":"10.1021/acs.energyfuels.5c04106","DOIUrl":null,"url":null,"abstract":"<p >Aqueous lithium-ion hybrid capacitors (ALIHCs) are considered one of the most sustainable energy storage devices due to their inherent safety and low cost, which generally exhibit both high power density and energy density, benefiting from the combination of capacitive and battery-type electrodes. However, the development of next-generation ALIHCs has long been impeded by the limited availability of suitable pseudocapacitive anode materials. Herein, for the first time, we report jarosite (KFe<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub>) as an anode material for constructing high-performing ALIHCs, which features intercalation pseudocapacitive behavior and rapid electrochemical kinetics, attributed to its intrinsic open-channeled crystal structure as well as nanomorphology. With the optimized 10 m (mol kg<sup>–1</sup>) LiCl aqueous electrolyte, the free-standing KFe<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub> anode with a three-dimensional hierarchically conductive architecture delivers a large pseudocapacitance (207.2 F g<sup>–1</sup>), prominent rate capability, and superior cycling stability (∼87.1% after 2000 cycles). Furthermore, when paired with a unique polyacrylamide (PAM)-10 m LiCl hydrogel electrolyte and free-standing K<sub>0.486</sub>V<sub>2</sub>O<sub>5</sub> cathode, the resulting quasi-solid-state ALIHC demonstrates excellent rate performance, good low-temperature adaptation (∼77.2% capacitance retention at −20 °C), and robust mechanical stability against extreme deformations. Our work presents a great opportunity of developing an inexpensive, new class of intercalation pseudocapacitive anode materials for aqueous lithium storage.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 36","pages":"17641–17650"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c04106","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous lithium-ion hybrid capacitors (ALIHCs) are considered one of the most sustainable energy storage devices due to their inherent safety and low cost, which generally exhibit both high power density and energy density, benefiting from the combination of capacitive and battery-type electrodes. However, the development of next-generation ALIHCs has long been impeded by the limited availability of suitable pseudocapacitive anode materials. Herein, for the first time, we report jarosite (KFe3(SO4)2(OH)6) as an anode material for constructing high-performing ALIHCs, which features intercalation pseudocapacitive behavior and rapid electrochemical kinetics, attributed to its intrinsic open-channeled crystal structure as well as nanomorphology. With the optimized 10 m (mol kg–1) LiCl aqueous electrolyte, the free-standing KFe3(SO4)2(OH)6 anode with a three-dimensional hierarchically conductive architecture delivers a large pseudocapacitance (207.2 F g–1), prominent rate capability, and superior cycling stability (∼87.1% after 2000 cycles). Furthermore, when paired with a unique polyacrylamide (PAM)-10 m LiCl hydrogel electrolyte and free-standing K0.486V2O5 cathode, the resulting quasi-solid-state ALIHC demonstrates excellent rate performance, good low-temperature adaptation (∼77.2% capacitance retention at −20 °C), and robust mechanical stability against extreme deformations. Our work presents a great opportunity of developing an inexpensive, new class of intercalation pseudocapacitive anode materials for aqueous lithium storage.

Abstract Image

高性能锂离子混合电容器的嵌入-伪容性黄钾铁矾阳极
水锂离子混合电容器(alihc)由于其固有的安全性和低成本而被认为是最可持续的储能设备之一,它通常具有高功率密度和能量密度,受益于电容型和电池型电极的结合。然而,由于合适的假电容阳极材料的有限可用性,下一代alihc的发展一直受到阻碍。在此,我们首次报道了黄钾铁矾(KFe3(SO4)2(OH)6)作为构建高性能alihc的阳极材料,由于其固有的开通道晶体结构和纳米形态,该材料具有插层赝电容行为和快速的电化学动力学。使用优化的10 m (mol kg-1) LiCl水溶液电解质,具有三维分层导电结构的独立式KFe3(SO4)2(OH)6阳极具有较大的赝电容(207.2 F - 1),突出的速率能力和优越的循环稳定性(2000次循环后约87.1%)。此外,当与独特的聚丙烯酰胺(PAM)-10 m LiCl水凝胶电解质和独立的K0.486V2O5阴极搭配时,所得到的准固态ALIHC表现出优异的速率性能,良好的低温适应性(−20°C时电容保持率约77.2%),以及对极端变形的强大机械稳定性。我们的工作为开发一种廉价的新型插层赝电容负极材料提供了一个很好的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信