Competing Grain Growth Pathways in Anisotropic Bi2Te3-Based Thermoelectric Nanoplates.

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zefan Xue,Xiege Huang,Weixiao Lin,Wenjun Cui,Zhi Yang,Wen Zhao,Congli Sun,Guodong Li,Gustaaf Van Tendeloo,Xiahan Sang
{"title":"Competing Grain Growth Pathways in Anisotropic Bi2Te3-Based Thermoelectric Nanoplates.","authors":"Zefan Xue,Xiege Huang,Weixiao Lin,Wenjun Cui,Zhi Yang,Wen Zhao,Congli Sun,Guodong Li,Gustaaf Van Tendeloo,Xiahan Sang","doi":"10.1002/adma.202510614","DOIUrl":null,"url":null,"abstract":"Thermoelectric nanoplates derived from anisotropic van der Waals (vdW) materials such as Bi2Te3 are pivotal for flexible electronics and microscale thermal management. Their performance critically depends on grain boundary (GB) microstructure, but the atomic-scale mechanisms governing grain growth in these highly anisotropic systems remain elusive. This particularly concerns the competition between individual nanoplate reshaping driven by facet stabilization and collective merging at GBs. Integrating in situ scanning transmission electron microscopy (STEM), density functional theory (DFT), and molecular dynamics (MD) simulations, these competing pathways in pure Bi2Te3 (BT) and Sb-doped (BST) systems are unraveled. Undoped BT nanoplates preferentially undergo atomically localized reshaping, with atoms migrating from high-energy edges to stabilize low-energy facets. Conversely, Sb doping introduces Sb-Te interfacial phases that thermodynamically favor GB coalescence, thereby shifting the dominant pathway to collective merging. This work reveals how chemical modification steers GB evolution, determining whether reshaping or merging predominates. Such understanding is crucial for rationally designing anisotropic layered materials for applications in flexible electronics, topological materials, and energy-efficient devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"130 1","pages":"e10614"},"PeriodicalIF":26.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202510614","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric nanoplates derived from anisotropic van der Waals (vdW) materials such as Bi2Te3 are pivotal for flexible electronics and microscale thermal management. Their performance critically depends on grain boundary (GB) microstructure, but the atomic-scale mechanisms governing grain growth in these highly anisotropic systems remain elusive. This particularly concerns the competition between individual nanoplate reshaping driven by facet stabilization and collective merging at GBs. Integrating in situ scanning transmission electron microscopy (STEM), density functional theory (DFT), and molecular dynamics (MD) simulations, these competing pathways in pure Bi2Te3 (BT) and Sb-doped (BST) systems are unraveled. Undoped BT nanoplates preferentially undergo atomically localized reshaping, with atoms migrating from high-energy edges to stabilize low-energy facets. Conversely, Sb doping introduces Sb-Te interfacial phases that thermodynamically favor GB coalescence, thereby shifting the dominant pathway to collective merging. This work reveals how chemical modification steers GB evolution, determining whether reshaping or merging predominates. Such understanding is crucial for rationally designing anisotropic layered materials for applications in flexible electronics, topological materials, and energy-efficient devices.
各向异性bi2te3基热电纳米片中相互竞争的晶粒生长途径
由各向异性范德华(vdW)材料(如Bi2Te3)衍生的热电纳米板是柔性电子和微尺度热管理的关键。它们的性能主要取决于晶界(GB)微观结构,但在这些高度各向异性的体系中,控制晶粒生长的原子尺度机制仍然难以捉摸。这尤其涉及到由小面稳定驱动的单个纳米板重塑和gb的集体合并之间的竞争。结合原位扫描透射电子显微镜(STEM)、密度泛函理论(DFT)和分子动力学(MD)模拟,揭示了纯Bi2Te3 (BT)和sb掺杂(BST)体系中的这些竞争途径。未掺杂的BT纳米板优先进行原子局部重塑,原子从高能边缘迁移到稳定的低能面。相反,Sb掺杂引入了Sb- te界面相,在热力学上有利于GB聚结,从而将主要途径转向集体合并。这项工作揭示了化学修饰如何引导GB的进化,决定了是重塑还是合并占主导地位。这种理解对于合理设计用于柔性电子、拓扑材料和节能器件的各向异性层状材料至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信